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Abstract

The data stream model has recently attracted attention for its applicability to numerous types of data,

including telephone records, web documents and clickstreams. For analysis of such data, the ability to

process the data in a single pass, or a small number of passes, while using little memory, is crucial.

We describe such a streaming algorithm that effectively clusters large data streams. We also provide

empirical evidence of the algorithm’s performance on synthetic and real data streams.

1 Introduction

A data stream is an ordered sequence of pointsx1; : : : ; xn that must be accessed in order and that can

be read only once or a small number of times. Each reading of the sequence is called alinear scanor a

pass. The stream model is motivated by emerging applications involving massive data sets; for example,

customer click streams, telephone records, large sets of web pages, multimedia data, financial transactions,
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and observational science data are better modeled as data streams. These data sets are far too large to fit in

main memory and are typically stored in secondary storage devices. Linear scans are the only cost-effective

access method; random access is prohibitively expensive. Some data sets, such as router packet statistics,

meteorological data, and sensor network data, are transient and need not be realized on disk; the data must

be processed as they are produced, and discarded in favor of summaries whenever possible. As the size of

such data sets far exceeds the amount of space (main memory) available to an algorithm, it is not possible

for a data stream algorithm to “remember” too much of the data scanned in the past. This scarcity of space

necessitates the design of a novel kind of algorithm that stores only asummaryof past data, leaving enough

memory for the processing of future data. Each scan of a large set on a slow device is expensive, and so the

criteria by which the performance of a data stream algorithm is judged include the number of linear scans

in addition to the usual ones (running time and memory usage). In the case of “transient” streams, only one

scan is possible.

The data stream and online or incremental models are similar in that they both require decisions to be

made before all the data are available. The models are not identical, however. Whereas an online algorithm

can have access to the firsti data points (and itsi previous decisions) when reacting to the(i + 1)th point,

the amount of memory available to a data stream algorithm is bounded by a function (usually a sub-linear

function) of the input size. Furthermore, unlike an online algorithm, a data stream algorithm may not be

required to take an irrevocable action after the arrival of each point; it may be allowed to take action after

a group of points arrives. Still, the models are very similar, and, in particular, a sublinear-space online

algorithm is a data stream algorithm as well.

The definition of the streaming model, inclusive of multiple passes, was first characterized in this form

by Henzingeret al. [38], although the work of Munro and Patterson [64] and of Flajolet and Martin [23]

predates this definition. The interest in the model started from the results of Alonet al. [4], who proved

upper and lower bounds for the memory requirements of one-pass algorithms computing statistics over data

streams.

Clustering, a useful and ubiquitous tool in data analysis, is, in broad strokes, the problem of finding a

partition of a data set so that, under some definition of “similarity,” similar items are in the same part of the

partition and different items are in different parts. The particular definition of clustering that is the focus of

this paper is thek–Median objective, that of identifyingk centers so that the sum of distances from each

point to its nearest center is minimized.

We study thek–Median problem in the stream context and provide a streaming algorithm with theoretical

performance guarantees. We begin by giving an algorithm that requires small space, and then later address
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the issue of clustering in one pass. We give a simple algorithm based on divide-and-conquer that achieves a

constant-factor approximation in small space. Elements of the algorithm and its analysis form the basis for

the constant-factor algorithm given subsequently. This algorithm runs in timeO(n1+�), usesO(n�) memory

and makes a single pass over the data. Next, using randomization we show how to reduce the the running

time to ~O(nk) without requiring more than a single pass1.

We also provide a new clustering algorithm that is used by our streaming method. The algorithm is based

on a facility location algorithm (defined in Section 4.1) that might produce more thank centers. We show

how the facility location algorithm can be modified to produce exactlyk clusters and thereby solve thek–

Median problem. Since the running time of the resulting algorithm is expensive –O(n2) for n points – we

offer some innovative techniques to speed up the algorithm. We give a sound way of quickly initializing the

facility location algorithm with a reasonably good set of centers. We also show, under some assumptions,

that we can restrict the choice of potential centers and yet find a good clustering.

We performed an extensive series of experiments comparing our enhanced facility location algorithm

against the commonly-usedk–Means algorithm. The results uncover an interesting trade-off between the

cluster quality and the running time. Our facility location-based algorithm produces solutions of near-

optimum quality, with smaller variance over multiple runs as compared tok–Means which produced solu-

tions of inferior quality with higher variance over multiple runs. However, our algorithm took more time to

find its better answers.

In our experiments with real data, we found that our stream technique has clustering quality comparable

to the clustering quality of running the algorithm on all the data at once. We also compared our streaming

algorithm with BIRCH and found a similar tradeoff between cluster quality and running time. Even though

we retain a tiny fraction of the amount of information that BIRCH retains, our algorithms took somewhat

longer to run, but produced solutions of higher quality.

2 Related Work

Streaming Algorithms: A rich body of fundamental research has emerged in the data stream model of

computation. Problems that can be solved in small space when the data is a stream include: frequency

estimation [36, 12], norm estimation [4, 22, 44], order statistics [64, 57, 56, 30, 28], synopsis structures

[26], time indexed data [25, 32, 17, 8], signal reconstructions [24, 18, 1, 33, 27, 29, 72].
1The notation~O(nk) is same as theO–notation except it hides polylogarithmic terms as opposed to constants. For example

O(n log2 n) is ~O(n).
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Theoretical Analysis of Clustering: For most natural clustering objective functions, the optimization

problems turn out to be NP hard. Therefore, most theoretical work is on the design of approximation

algorithms: algorithms that guarantee a solution whose objective function value is within a fixed factor of

the value of the optimal solution.

Thek–Center andk–Median problems are among the most studied clustering problems, since, for both

problems, a solution simply consists ofk members of the data set, wherek, the desired number of clusters,

is given as input. Thek members are chosen as cluster centers, each data point is assumed to be “assigned”

to cluster center nearest it, and its “assignment” distance is its distance to this nearest center. Thus, for the

purpose of this paper, the solution to the clustering problem is exactlyk centers.

Thek–Center objective function is to minimize the largest assignment distance whereas ink–Median the

sumof assignment distances is to be minimized. Thek–Center measure is obviously sensitive to outliers.

Thek–Median objective is less sensitive to noise. The Facility Location problem is the Lagrangian relax-

ation of thek–Median problem, where the number of centers is unrestricted but there is an additional cost

for each center included in the solution. There is abundant literature on these, books [45, 62, 55], provable

algorithms [41, 49, 54, 53, 71, 31, 16, 15, 6, 52, 47, 14, 59, 7, 46], the running time of provable clustering

heuristics [21, 10, 42, 34, 73, 60], and special metric spaces [6, 52, 43, 68].

The k–Median problem is also relevant in the context of the well-known EM andk–Means heuristics.

EM (expectation maximization) iteratively refines a clustering by trying to maximize the probability that the

current clustering corresponds to a model. If the clusters are modeled as Gaussian spheres enforcing a parti-

tion, the heuristic becomesk–Means. Ink–Means,k centers are chosen initially, and, in each iteration, each

center is replaced by the geometric mean of the cluster corresponding to it. This is thek–Median objective

function defined over real spaces in which assignment costs (distances) are replaced by their squares.

Charikaret al. [13] gave a constant-factor, single-passk–Center algorithm usingO(nk log k) time and

O(k) space. Fork-Median, we give a constant-factor, single-pass approximation in time~O(nk) and sub-

linearn� space for constant� > 0. Notice that in a single pass the data points cannot be labeled with the

clusters they belong to. These algorithms output the cluster centers only.

More involved definitions of clustering based on other graph theoretic notions exist; cliques [9], cuts [74],

conductance [48]. [18, 69, 2] consider clustering defined by projections onto subspaces.

Existing Large Scale Clustering Algorithms: Clustering is very well studied in the applied literature,

and the following is by no means an exhaustive study of related work.k–Means is a widely used heuristic,

but, since the mean of a cluster is not always defined, alternate medoid-based algorithms have been de-
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veloped. For example,k–Medoids [50] selectsk initial centers and repeatedly replaces an existing center

with a random chosen point, if doing so improves the sum of squared assignment distances.2. CLARA [50]

proposed sampling to reduce the number of exchanges considered, since choosing a new medoid among all

the remaining points is time-consuming; CLARANS [66] draws a fresh sample of feasible centers before

each calculation of improvement. We will later see a slightly differing non-repeated sampling approach.

k-medoid approaches, including PAM, CLARA, and CLARANS, are known not to be scalable and thus are

inappropriate for stream analysis.

Other partitioning methods include that of Bradleyet al. [11], and its subsequent improvement by Farn-

stormet al. [20], which repeatedly takesk weighted centers (initially chosen randomly with weight 1) and

as much data as can fit in main memory, and computes ak-clustering. The newk centers so obtained are

then weighted by the number of points assigned, the data in memory is discarded and the process repeats on

the remaining data. A key difference between this approach and ours is that their algorithm places higher

significance on points later in the data set; we make no such assumptions. Further, these approaches are not

known to outperform the popular BIRCH algorithm.

A hierarchical clustering is a sequence of nested partitions. Anagglomerativealgorithm for hierarchical

clustering starts by placing each input data point in its own cluster, and then repeatedly merges the closest

pair of clusters until the number of clusters reduces tok. Many hierarchical agglomerative clustering (HAC)

heuristics exist. Under the celebrated SLINK heuristic, the distance between clustersA andB is defined

by the closest pair of pointsa 2 A, b 2 B. Another hierarchical technique is CURE [35] which represents

a cluster by multiple points that are initially well-scattered in the cluster and then shrunk towards the clus-

ter center by a certain fraction. Depending on the values of the CURE parameters, the algorithm can fall

anywhere along a spectrum from SLINK (HAC) tok–Medoid. Both HAC and CURE are designed to dis-

cover clusters of arbitrary shape and thus do not necessarily optimize thek–Median objective. Hierarchical

algorithms, including BIRCH [76] are known to suffer from the problem that hierarchical merge or split

operations are irrevocable [37].

The stream clustering algorithm we present is somewhat similar to CURE. The algorithm given here

constructs a hierarchical clustering. However if we consider the dendogram, our algorithm operates at the

same time on all layers of the tree and maintains a front. Our algorithm is similar to CURE in that both apply

a partitioning approach and cluster data bottom up, but, whereas CURE is geared towards robustness and

clustering arbitrary shapes, the algorithm presented here is designed to produce a provably good clustering.
2In Section 4.3, we will see a pivoting scheme which at every step will not preserve the number of medoids but eventually

guarantee that the final solution is close to the best possible one.
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Other known approaches such as DBSCAN [19], OPTICS [5] and DENCLUE [39], STING [75], CLIQUE [3],

Wave-Cluster [70], and OPTIGRID [40], are not designed to optimize thek–Median objective.

3 A Provable Stream Clustering Framework

3.1 Clustering in Small Space

Data stream algorithms must not have large space requirements, and so our first goal will be to show that

clustering can be carried out in small space (n� for n data points, and0 < � < 1), without being concerned

with the number of passes. Subsequently we will develop a one-pass algorithm. We first investigate algo-

rithms that examine the data in a piecemeal fashion. In particular, we study the performance of a divide-and-

conquer algorithm, called Small-Space, that divides the data into pieces, clusters each of these pieces, and

then again clusters the centers obtained (where each center is weighted by the number of points assigned

to it). We show that this piecemeal approach is good, in that if we had a constant-factor approximation

algorithm, running it in divide-and-conquer fashion would still yield a (slightly worse) constant-factor ap-

proximation. We then propose another algorithm (Smaller-Space) that is similar to the piecemeal approach

except that instead of reclustering only once, it repeatedly reclusters weighted centers. For this algorithm,

we prove that if we recluster a constant number of times, a constant-factor approximation is still obtained,

although, as expected, the constant factor worsens with each successive reclustering.

3.1.1 Simple Divide-and-Conquer and Separability Theorems

For simplicity we start with the version of the algorithm that reclusters only once.

Algorithm Small-Space(S)

1. DivideS into l disjoint pieces�1; : : : ; �l.

2. For eachi, findO(k) centers in�i. Assign each point in�i to its closest center.

3. Let�0 be theO(lk) centers obtained in (2), where each centerc is weighted by the number of points

assigned to it.

4. Cluster�0 to findk centers.

We are interested in clustering in small space,l will be set so that bothS and�0 fit in main memory. IfS

is very large, no suchl may exist – we will address this issue later.
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Definition 1 (The k–median Problem) Given an instance(S; k) of k–Median, i.e., an integerk and a set

S of n points with metricd(�; �), the k–Median cost(or simply thecost) of a set of mediansC1; : : : ; Ck

is f(S;C1; : : : ; Ck) =
P

x2S min1�i�k d(x;Ci). That is, the cost of a solution is the sum of assignment

distances. Define cost(S;Q) to be the smallest possible cost if the medians are required to belong to the set

Q. The optimization problem is to find cost(S; S) for the discrete case and cost(S;Rd) for the Euclidean

case.

Before analyzing algorithm Small-Space, we describe the relationship between the discrete and continu-

ous clustering problem. The following is folklore (the proof can be found in [34]):

Theorem 1 Given an instance(S; k) of k–Median cost(S; S) � 2cost(S;Q) for anyQ.3

The following separability theorem sets the stage for a divide-and-conquer algorithm. This theorem carries

over to other clustering metrics such as the sum of squared distances.

Theorem 2 Consider an arbitrary partition of a setS ofn points into�1; : : : ; �`. Then
P`

i=1cost(�i; �i) �
2cost(S; S). 4

Proof: ¿From Theorem 1, cost(�i; �i) � 2cost(�i; S). Summing overi the result follows. 2

Next we show that the new instance, where all the pointsi that have mediani0 shift their weight to the

point i0 (i.e., the weightedO(lk) centersS0 in Step 2 of Algorithm Small-Space), has a good feasible clus-

tering solution. Assigning a pointi0 of weightw to a median at distanced will cost wd; that is, assignment

distances are multiplied by weights in the objective function. Notice that the set of points in the new instance

is much smaller and may not even contain the optimum medians forS.

Theorem 3 If C =
P`

i=1cost(�i; �i) andC� =cost(S; S) =
P`

i=1cost(�i; S) then there exists a solution

of cost at most2(C + C�) to the new weighted instance�0. 4

Proof: For all1 � i � `, letCi;1; : : : ; Ci;k 2 �i be the medians that achieve the minimum cost(�i; �i). Let

the medians that achieve the minimum cost(S; S) beC�
1 ; : : : ; C

�
k .

For x 2 �i, let c(x) denote the closest ofCi;1; : : : ; Ci;k to x, and letC�(x) denote the closest of

C�
1 ; : : : ; C

�
k to x. Also let wi;j be the number of membersx of �i for which c(x) = Ci;j (that is,

wi;j is the weight in�0 of Ci;j). For eachCi;j, there is a member ofC�
1 ; : : : ; C

�
k within a distance

of minc(x)=Ci;j
(d(x; c(x)) + d(x;C�(x))) by the triangle inequality. Therefore,f(�0; C�

1 ; : : : ; C
�
k) �

3The factor 2 is not present in the familiar case whereS � Q = Rd.
4Again the factor 2 is not present in the case that the data are points inRd and the medians can be anywhere inRd.

7



P
Ci;j2�0 wi;j minc(x)=Ci;j

(d(x; c(x)) + d(x;C�(x))), which is at most
P

x2S (d(x; c(x)) + d(x;C�(x))) �
C+C�. Thus cost(�0; S) � C+C� and by Theorem 1 there is a solution for�0 of cost at most2(C +C�).

2

We now show that if we run a bicriteria(a; b)-approximation algorithm (where at mostak medians are

output with cost at mostb times the optimumk–Median solution) in Step 2 of Algorithm Small-Space and

we run ac-approximation algorithm in Step 4, then the resulting approximation by Small-Space can be

suitably bounded. Note that Theorems 2 and 3 still apply ifak medians (wherea > 1 is a constant) are

found for each�i.

Theorem 4 The algorithm Small-Space has an approximation factor of2c(1 + 2b) + 2b.5

Proof: Let the optimalk-median solution be of costC�. Theorem 2 implies that the sum of the costs of

the optimal solutions to the instances�1; : : : ; �` is at most2C�. Since ab-approximate solution is found

for each�i, the costC of the solution at the end of the first stage is at most2bC�. By Theorem 3, the new

instance�0 must admit a solution of cost at most2(C + C�); a c-approximation algorithm is guaranteed to

find a solution of cost2c(1 + 2b)C� or less. The sum of the two bounds gives a bound on the cost of the

final medians; the theorem follows. 2

The black-box nature of this algorithm allows us to devise divide-and-conquer algorithms.

3.1.2 Divide-and-Conquer Strategy

We generalize Small-Space so that the algorithm recursively calls itself on a successively smaller set of

weighted centers.

Algorithm Smaller-Space(S,i)

1. If i < 1 then Halt.

2. DivideS into l disjoint pieces�1; : : : ; �l.

3. For eachh 2 f1; : : : ; lg, findO(k) centers in�h. Assign each point in�h to its closest center.

4. Let�0 be theO(lk) centers obtained in (2), where each centerc is weighted by the number of points

assigned to it.

5. Call Algorithm Smaller-Space(�0; i� 1).
5The approximation factor isc(b+ 1) + b when the points fall inRd and the medians can be placed anywhere inRd.
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We can claim the following.

Theorem 5 For constanti, Algorithm Smaller-Space(S; i) gives a constant-factor approximation to the

k–Median problem.

Proof: Assume that the approximation factor for thejth level isAj . From Theorem 2 we know that the cost

of the solution of the first level is2b times optimal. From Theorem 4 we get that the approximation factor

Aj would satisfy a simple recurrence,

Aj = 2Aj�1(2b+ 1) + 2b

The solution of the recurrence isc � (2(2b + 1))j . This isO(1) givenj is a constant. 2

Since the intermediate medians in�0 must be stored in memory, the number of subsetsl that we partition

S into is limited. In particular,lk � M and(n=l) �M since each partition must also be resident. Such an

l may not always exist.

In the next section we will see a way to get around this problem. We will implement the hierarchical

scheme more cleverly and obtain a clustering algorithm for the streaming model.

3.2 Clustering in The Data Stream Model

Under the Data Stream Model, computation takes place within bounded spaceM and the data can only be

accessed via linear scans (i.e., a data point can be seen only once in a scan, and points must be viewed in

order). In this section we will modify the multi-level algorithm to operate on data streams. We will present

a one-pass,O(1)-approximation in this model assuming that the bounded memoryM is not too small, more

specificallyn� wheren denotes the size of the stream.

We will maintain a forest of assignments. We will complete this tok trees, and all the nodes in a tree will

be assigned to the median denoted by the root of the tree. First we will show how to solve the problem of

storing intermediate medians. Next we will inspect the space requirements and running time.

Data Stream Algorithm We will modify our multi-level algorithm slightly:

1. Input the firstm points; use a bicriterion algorithm to reduce these toO(k) (say 2k) points. As

usual, the weight of each intermediate median is the number of points assigned to it in the bicriterion

clustering. (Assumem is a multiple of2k.) This requiresO(f(m)) space, which for a primal dual

algorithm can beO(m2). We will see aO(mk)-space algorithm later.
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2. Repeat the above till we have seenm2=(2k) of the original data points. At this point we havem

intermediate medians.

3. Cluster thesem first-level medians into2k second-level medians and proceed.

4. In general, maintain at mostm level-i medians, and, on seeingm, generate2k level-i + 1 medians,

with the weight of a new median as the sum of the weights of the intermediate medians assigned to it.

5. After seeing all the original data points (or to have a clustering of the points seen so far) we cluster all

the intermediate medians intok final medians.

Note that this algorithm is identical to the multi-level algorithm described before.

The number of levels required by this algorithm is at mostO(log(n=m)= log(m=k)). If we havek � m

andm = O(n�) for some constant� < 1, we have anO(1)-approximation. We will havem =
p
M where

M is the memory size (ignoring factors due to maintaining intermediate medians of different levels). We

argued that the number of levels would be a constant whenm = n� and hence whenM = n2� for some

� < 1=2.

Linear Space Clustering The approximation quality which we can prove (and intuitively the actual qual-

ity of clustering obtained on an instance) will depend heavily on the number of levels we have. From this

perspective it is profitable to use a space-efficient algorithm.

We can use the local search algorithm in [14] to provide a bicriterion approximation inspace linear in

m, the number of points clustered at a time. The advantage of this algorithm is that it maintains only an

assignment and therefore uses linear space. However the complication is that for this algorithm to achieve

a bounded bicriterion approximation, we need to set a “cost” to each median used, so that we penalize if

many more thank medians are used. The algorithm solves a facility location problem after setting the cost

of each median to be used. However this can be done by guessing this cost in powers of(1 + 
) for some

0 < 
 < 1=6 and choosing the best solution with at most2k medians. In the last step, to getk medians

we use a two step process to reduce the number of medians to2k and then use [47, 14] to reduce tok. This

allows us to cluster withm = M points at a time providedk2 �M .

The Running Time The running time of this clustering is dominated by the contribution from the first

level. The local search algorithm is quadratic and the total running time isO(n1+�) whereM = n�. We

argued before, however, that� will not be very small and hence the approximation quality which we can

prove will remain small. The theorem follows,
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Theorem 6 We can solve thek–Median problem on a data stream with timeO(n1+�) and space�(n�) up

to a factor2O( 1
�
).

3.3 Clustering Data Streams in~O(nk) Time

To achieve scalability we would like a~O(nk) algorithm over an algorithm super linear inn. Let us recall the

algorithm we have developed so far. We havek2 � M , and we are applying an alternate implementation

of a multi-level algorithm. We are clusteringm = O(M) (assumingM = O(n�) for constant� > 0)

points and storing2k medians to “compress” the description of these data points. We use the local search-

based algorithm in [14]. We keep repeating this procedure till we seem of these descriptors or intermediate

medians and compress them further into2k. Finally, when we are required to output a clustering, we

compress all the intermediate medians (over all the levels there will be at mostO(M) of them) and getO(k)

penultimate medians which we cluster into exactlyk using the primal dual algorithm as in [47, 14].

Subquadratic time Clustering: We will use the results in [42] on metric space algorithms that are sub-

quadratic. The algorithm as defined will consist of two passes and will have constant probability of success.

For high probability results, the algorithm will makeO(log n) passes. As stated, the algorithm will only

work if the original data points areunweighted. Consider the following algorithm:

1. Draw a sample of sizes =
p
nk.

2. Findk medians from theses points using the primal dual algorithm in [47].

3. Assign each of then original points to its closest median.

4. Collect then=s points with the largest assignment distance.

5. Findk medians from among thesen=s points.

6. We have at this point2k medians.

Theorem 7 [42] The above algorithm gives anO(1) approximation with2k medians with constant proba-

bility.

The above algorithm provides a constant-factor approximation for thek–Median problem (using2k me-

dians) with constant probability. Repeat the above experimentO(log n) times for high probability. We will

not run this algorithm by itself, but as a substep in our algorithm. The algorithm requires~O(nk) time and

space. Using this algorithm with the local search tradeoff results in [14] reduces the space requirement to
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O(
p
nk). Alternate sampling-based results exist for thek–Median measure that do extend to the weighted

case [63] but the sample sizes depend on the diameter of the space.

Extension to the Weighted Case: We need this sampling-based algorithm to work on weighted input. It

is necessary to draw a random sample based on the weights of the points; otherwise the medians with respect

to the sample do not convey much information.

The simple idea of sampling points with respect to their weights does not help. In the first step we may

only eliminatek points.

We suggest the following “scaling”. We can round the weights to the nearest power of(1 + �) for � > 0.

In each group we can ignore the weight and lose a(1 + �) factor. Since we have an~O(nk) algorithm,

summing over all groups, the running time is still~O(nk). The correct way to implement this is to compute

the exponent values of the weights and use only those groups which exist, otherwise the running time will

depend on the largest weight.

3.3.1 The Full Algorithm

We will use this sampling-based scheme to develop a one-pass andO(nk)-time algorithm that requires only

O(n�) space.

� Input the firstO(M=k) points, and use the randomized algorithm above to cluster this to2k interme-

diate median points.

� Use a local search algorithm to clusterO(M) intermediate medians of leveli to 2k medians of level

i+ 1.

� Use the primal dual algorithm [47] to cluster the finalO(M) medians tok medians.

Notice that the algorithm remains one pass, since theO(log n) iterations of the randomized subalgorithm

just add to the running time. Thus, over the first phase, the contribution to the running time is~O(nk).

Over the next level, we havenkM points, and if we clusterO(M) of these at a time takingO(M2) time,

the total time for the second phase isO(nk) again. The contribution from the rest of the levels decreases

geometrically, so the running time is~O(nk). As shown in the previous sections, the number of levels in this

algorithm isO(logM
k
n), and so we have a constant-factor approximation fork � M = �(n�) for some

small�. Thus,

Theorem 8 Thek–Median problem has a constant-factor approximation algorithm running in timeO(nk logn),

in one pass over the data set, usingn� memory, for smallk.

12



3.4 Lower Bounds

In this section we explore whether our algorithms could be speeded up further and whether randomization

is needed. For the former, note that we have a clustering algorithm that requires time~O(nk) and a natural

question is could we have done better? We’ll show that we couldn’t have done much better since a deter-

ministic lower bound fork–Median is
(nk). Thus, modulo randomization, our time bounds pretty much

match the lower bound. For the latter, we show one way to get rid of randomization that yields a single pass,

small memoryk–Median algorithm that is a poly-log n approximation. Thus we do also have a deterministic

algorithm, but with more loss of clustering quality.

We now show that any constant-factor deterministic approximation algorithm requires
(nk) time. We

measure the running time by the number of times the algorithm queries the distance function.

We consider a restricted family of sets of points where there exists a k-clustering with the property that

the distance between any pair of points in the same cluster is 0 and the distance between any pair of points

in different clusters is 1. Since the optimumk-clustering has value 0 (where thevalue is the distance from

points to nearest centers), any algorithm that doesn’t discover the optimum k-clustering does not find a

constant-factor approximation.

Note that the above problem is equivalent to the following Graphk-Partition Problem: Given a graphG

which is a completek-partite graph for somek, find thek-partition of the vertices ofG into independent

sets. The equivalence can be easily realized as follows: The set of pointsfs1; : : : ; sng to be clustered

naturally translates to the set of verticesfv1; : : : ; vng and there is an edge betweenvi; vj iff dist(si; sj) > 0.

Observe that a constant-factork-clustering can be computed witht queries to the distance function iff a

graphk-partition can be computed witht queries to the adjacency matrix ofG.

Kavraki, Latombe, Motwani, and Raghavan [51] show that any deterministic algorithm that finds a Graph

k-Partition requires
(nk) queries to the adjacency matrix ofG. This result establishes a deterministic

lower bound fork–Median.

Theorem 9 A deterministick–Median algorithm must make
(nk) queries to the distance function to

achieve a constant-factor approximation.

Note that the above theorem only applies to the deterministic case. A lower bound that applies to ran-

domized algorithms was later proven in [60, 73]. These proofs use Yao’s MinMax principle and construct a

distribution over which the best deterministic algorithm takes
(nk) time. The following is proved in [60].

Theorem 10 Any k–Median algorithm must make
(nk) queries to the distance function to achieve a

constant factor approximation.
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3.5 The Framework in Retrospect

An important aspect of the previous sections is the framework that emerges from the sequence of algorithms.

First choose a linear time algorithm that performs well on static data. Repeatedly compose this favored

algorithm in layers – each subsequent layer inputs the (weighted) cluster centers from the previous layer,

and outputsO(k) clusters. The final layer ensures that onlyk clusters remain.

In essence we prove here theoretically that an algorithm that performs well on static chunks of data, can

be made to operate on a stream, preserving reasonable performance guarantees. We chose algorithms with

proven bounds, to help us quantify the notion of preserving performance guarantees; but the underlying

intuition carries over to any good linear time clustering algorithm in suitable domains.

4 The Issue ofk: Facility Location or k-Median

In this section we will consider an interesting issue in clustering: the parameterk, the number of clusters.

The parameter is required to define a suitable optimization objective and frequently used to denote an upper

bound on the number of possible clusters an user wishes to consider.

However the parameterk is a target, andneed not be held fixed in the intermediate stages of the algorithm.

In fact we will use this flexibility to reduce the quadratic running time of the local search algorithm in the

second step of the algorithm in Section 3.3.1. The local search algorithm that we devise will settle on a

number of centers larger thank and then will reduce the number of centers to exactlyk if required.

The notion of ability to relax the parameterk in the intermediate steps of the algorithm provide an in-

teresting contrast tok-Means which (as defined commonly) does not relax the number of clusters. And in

fact we believe that some of the issues in stability of thek-Means algorithms are related to this fact and we

discuss them further in our experimental evaluation in Section 5.

4.1 A LSEARCH Algorithm

In this section we will speed up local search by relaxing the number of clusters in the intermediate steps and

achieve exactlyk clusters in the final step. We must use at leastk medians in the intermediate steps, since

the best solution withk � 1 medians can be much more expensive than the bestk median solution, and we

are interested in guarantees. At the same time we cannot use too many since we want to save space. Since

we have flexibility ink, we can develop a new local search based algorithm.

Definition 2 (The Facility Location Problem) We are given a setN of n data points in a metric space, a

distance functiond : N �N ! <+, and a parameterz. For any choice ofC = fc1; c2; : : : ; ckg � N of k
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cluster centers, define a partition ofN into k clustersN1; N2; : : : ; Nk such thatNi contains all points inN

that are closer toci than to any other center. The goal is to select a value ofk and a set of centersC so as

to minimize the facility clustering (FC) cost function:

FC(N;C) = zjCj+
kX

i=1

X

x2Ni

d(x; ci):

We start with an initial solution and then refine it by making local improvements. Throughout this section,

we will refer to the “cost” of a set of medians to mean theFC cost from the facility location definition. The

significant difference fromk-means and other such iterative heuristic would be that instead of trying to

preserve a good clustering with exactlyk medians or representation points, we would use a few extra points

(twice as many) but would be able to provide provable guarantees. As we mentioned before Lagrangian

Relaxation techniques provide a powerful tool for combinatorial optimization problems and the facility

location minimization is a Lagrangian relaxation of thek-median problem.

4.1.1 A Throwback on Facility Location

We begin by describing a simple algorithm of Charikar and Guha [14], referred to asCG, for solving the

facility location problem on a setN of n points in a metric space with metric (relaxed metric)d(�; �), when

the facility cost isz.

Assume that we have a feasible solution to facility location onN given d(�; �) andz. That is, we have

some setI � N of currently open facilities, and an assignment for each point inN to some (not necessarily

the closest) open facility. For everyx 2 N we definegain of x to be the cost we would save (or further

expend) if we were to open a facility atx (if one does not already exist), and then perform all possible

advantageous reassignments and facility closings, subject to the following two constraints: first, that points

cannot be reassigned except tox, and second, that a facility can be closed only if its members are first

reassigned tox. Thegain of x can be easily computed inO(jNIj) time.

Algorithm CG(data set N , facility cost z)

1. Obtain an initial solution(I; f) (I � N of facilities, f an assignment function) that gives an-

approximation to facility location onN with facility costz.

2. Repeat
(log n) times:

� Randomly orderN .
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� For eachx in this random order: calculategain(x), and ifgain(x) > 0, add a facility there and

perform the allowed reassignments and closures.

LetC� denote the cost of the optimalk-Median solution. Settingz = C�=(
k) gives a(1 + 2

 ) approxi-

mation using(1 + 
)k medians [14]. This of course is infeasible if we do not knowC�, what [14] suggests

is to try all possiblet such that

minfd(x; y) j d(x; y) > 0g � (1 + �)t �
X

y

d(x; y) for some x

The value on the left denotes the smallest non-zero solution possible and hence a lower bound forC�. The

value on the right indicates one feasible solution fork = 1, whenx (some arbitrary point) is chosen as a

median; thus serves as an upper bound forC�. The arguments carry over for a relaxed metric as well. See

[14] for details.

4.2 Our New Algorithm

The above algorithm does not directly solvek–Median but could be used as a subroutine to ak–Median

algorithm, as follows. We first set an initial range for the facility costz (between 0 and an easy-to-calculate

upper bound); we then perform a binary search within this range to find a value ofz that gives us the desired

numberk of facilities; for each value ofz that we try, we call Algorithm CG to get a solution.

Binary Search Two questions spring to mind: first, will such a binary search technique work, and second,

will such an algorithm, be sufficiently fast and accurate ?

Notice to get a3-approximation using2k medians we just have to find the optimumC� value, and set

z = C�=k. Since we do not knowC� we can try to find it by binary search; which is the same as binary

search ofz. This search for the parameterz orC� calls the CG algorithm repeatedly for a setting and checks

if the solution contains exactly k medians or the range of values forz is very small. But the CG algorithm’s

running time�(n2 logn) is expensive for large data streams. Therefore, we describe a new local search

algorithm that relies on the correctness of the above algorithm but avoids the quadratic running time by

taking advantage of the structure of local search.

4.3 Finding a Good Initial Solution

On each iteration of step 2 above, we expect the total solution cost to decrease by some constant fraction of

the way to the best achievable cost [14]; if our initial solution is a constant-factor approximation rather than
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ann-approximation (as used by Charikar and Guha), we can (provably) reduce our number of iterations

from�(log n) to�(1). We will therefore use the following algorithm for our initial solution:

Algorithm InitialSolution(data set N , facility cost z)

1. Reorder data points randomly

2. Create a cluster center at the first point

3. For every point after the first,

� Let d = distance from the current point to the nearest existing cluster center

� With probability d=z create a new cluster center at the current point; otherwise add the current

point to the best current cluster

This algorithm runs in time proportional ton times the number of facilities it opens and obtains an

expected8-approximation to optimum [61].

4.4 Sampling to Obtain Feasible Centers

Next we present a theorem that will motivate a new way of looking at local search. It is stated and proved

in terms of the actualk–Median problem, but holds, with slightly different constants, for minimization for

other measures such as SSQ, the sum of squares of the distances to the median.

Assume the pointsc1; : : : ; ck constitute an optimal solution to thek–Median problem for the data setN ,

thatCi is the set of points inN assigned toci, and thatri is the average distance from a point inCi to ci for

1 � i � k. Assume also that, for1 � i � k, jCij=jN j � p. Let 0 < Æ < 1 be a constant and letS be a set

of m = 8
p log

2k
Æ points drawn independently and uniformly at random fromN .

Theorem 11 There is a constant� such that with high probability, the optimumk–Median solution in

which medians are constrained to be fromS has cost at most� times the cost of the optimum unconstrained

k–Median solution (where medians can be arbitrary points inN ).

Proof: If jSj = m = 8
p log

2k
Æ then8i, PrfjS \ Cij < mp=2g < Æ

2k , by Chernoff bounds. ThenPrf9i :
jS\Cij < mp=2g < Æ

2 . Given thatjS\Cij � mp=2, the probability that no point fromS is within distance

2ri of the optimum centerci is at most12
mp=2 � 1

2

log 2k
Æ = Æ

2k by Markov’s Inequality. SoPrf9cj : 8x 2
S; d(x; ci) > 2rig � Æ

2 . If, for each clusterCi, our sample contains a pointxi within 2ri of ci, the cost

of the median setfx1; : : : ; xkg is no more than 3 times the cost of the optimalk–Median solution (by the

triangle inequality, each assignment distance would at most triple). 2
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In some sense we are assuming that the smallest cluster is not too small. If, for example, the smallest

cluster contains just one point, i.e.,p = 1=jN j, then clearly no point can be overlooked as a feasible center.

We view such a small subset of points as outliers, not clusters. Hence we assume that outliers have been

removed. Therefore if instead of evaluatinggain() for every pointx we only evaluate it on a randomly

chosen set of�(1p log k) points, we are still likely to choose good medians but will finish our computation

sooner.

4.5 The Complete Algorithm

We now present the full algorithm with a modification that speeds up the binary search. The observation

is if our cost changes very little from one iteration to the next and we are far fromk centers, then we have

gotten the value ofz incorrect.

We first give a Facility Location subroutine that ourk–Median algorithm will call; it will take a parameter

� 2 < that controls convergence. The other parameters will be the data setN of sizen, the metric or relaxed

metricd(�; �), the facility costz, and an initial solution(I; a) whereI � N is a set of facilities anda : N ! I

is an assignment function.

Algorithm FL( N , d(�; �), z, �, (I,a))

1. Begin with(I; a) as the current solution

2. LetC be the cost of the current solution onN . Consider the feasible centers in random order, and for

each feasible centery, if gain(y) > 0, perform all advantageous closures and reassignments (as per

gain description), to obtain a new solution(I 0; a0) [a0 should assign each point to its closest center in

I 0]

3. LetC 0 be the cost of the new solution; ifC 0 � (1� �)C, return to step 2

Now we will give ourk–Median algorithm for a data setN with distance functiond.

Algorithm LSEARCH (N; d(�; �); k; �; �0 ; �00)

1. zmin  0

2. zmax  
P

x2N d(x; x0) (for x0 an arbitrary point inN )

3. z  (zmax + zmin)=2

4. (I; a) InitialSolution(N , z).

5. Randomly pick�(1p log k) points as feasible medians
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6. While #medians6= k andzmin < (1� �00)zmax:

� Let (F; g) be the current solution

� RunFL(N; d; �; (F; g)) to obtain a new solution(F 0; g0)

� If k � jF 0j � 2k, then exit loop

� If jF 0j > 2k thenfzmin  z andz  (zmax + zmin)=2g; else ifjF 0j < k thenfzmax  z and

z  (zmax + zmin)=2g

7. Return our solution(F 0; g0).6

The initial value ofzmax is chosen as a trivial upper bound (sum of assignment costs) on the value ofz

we will be trying to find. The running time of LSEARCH isO(nm+ nk log k) wherem is the number of

facilities opened by InitialSolution. Althoughm depends on the data set but it is usually small, leading to a

significant improvement over previous algorithms.

5 Empirical Evaluations

5.1 Empirical Evaluation of LSEARCH

We present the results of experiments comparing the performance ofk–Means and LSEARCH . We con-

ducted all experiments on a Sun Ultra 2 with two, 200MHz processors, 256 MB of RAM, and 1.23 GB

of swap space,7 running SunOS 5.6. A detailed description can be found in the conference version[67];

we present the highlights. All the experiments compare the SSQ measure, which is the sum ofsquares

of the distances to the medians. This is because the algorithms we compare against use this measure. As

mentioned the proof our our algorithms carry over in this setting with weaker theoretical guarantees in this

relaxed triangle inequality setting8.

Small Low-Dimensional Data Sets We generated small data sets, each containing between 1000 and

6400 points of dimension at most four, and ran LSEARCH andk–Means on each. Each of these consists of

five to sixteen uniform-density, radius-one spheres of real vectors, with five percent random noise uniform

over the space. We generated grid data sets, in which the spheres are centered at regular or nearly regular
6To simulate a continuous space, move each cluster center to the center-of-mass for its cluster.
7Our processes never used more than one processor or went into swap.
8The square of distances satisfies a relaxed triangle inequality. In particular,d2(u; v) � (d(u; y) + d(y; v))2 = d(u; y)2 +

2d(u; y)d(y; v) + d(y; v)2 � 2(d(u; y)2 + d(y; v)2). The last step follows by noting that2d(u; y)d(y; v) � d(u; y)2 + d(y; v)2

since2ab � a2 + b2 and(a� b)2 � 0 for all a; b.

19



intervals; shifted-center data sets, in which the spheres are centered at positions slightly shifted from those

of the grid data sets; and random-center data sets. Becausek–Means and LSEARCH are randomized, we

ran each algorithm ten times on each data set, recording the mean and variance of SSQ. For each of the

small data sets, we stored the minimum SSQ achieved on the data set, and used this value as an upper bound

on the best achievable SSQ for this data set.

Figure 2(a) and (b) show thek–Means and LSEARCH SSQ values for the grid and shifted-center data

sets, normalized by the best-known SSQ for each set. The error bars represent normalized standard devia-

tions in SSQ. In 2(a) and (b), the data set order is such that the centers from which the clusters in theith

grid data set were generated are the same as the centers for theith shifted-centerset, except that each shifted

center is independently shifted a small distance from the position of the corresponding grid center. Since the

slight asymmetry is the only difference between the distributions of theith grid and shifted-center data sets,

the results in these two graphs suggest that this asymmetry accounts for the greater disparity betweenk–

Means and LSEARCH performance on the shifted-center sets. The shifted-center and random-center data

sets exhibit much less symmetry than the grid data sets. The gap betweenk–Means and LSEARCH perfor-

mance seems to increase with increasing data asymmetry. Figure 2(c) shows thek–Means and LSEARCH

SSQ values for the random-center sets, normalized as before by the best-known SSQs.

LSEARCH performed consistently well (i.e., with low variance in SSQ) on all the synthetic data sets.

Figure 1(a) shows a one-dimensional, random-center data set, represented as a histogram; the horizontal

axis gives the coordinates of the data points, and the height of each bar is the number of points in the data set

that fell within the range covered by the width of the bar. Therefore, the five peaks correspond to the 5 high-

density regions (clusters), and the remaining area corresponds to low-level, uniform noise. The ovals show

the coordinates of the highest-cost medians found byk–Means for this data set (recall that both algorithms

were run ten times each), and the “plus” signs give the locations of the highest-cost medians found by

LSEARCH . Figure 1(b) shows the best medians (represented as octagons) and worst medians (diamonds)

found byk–Means on a two-dimensional data set. 1(c) shows the lowest-cost medians (rectangles) and

highest-cost medians (“plus” signs) found by LSEARCH on the same data set. These examples illustrate

the general theme that LSEARCH consistently found good medians, even on its worst run, whereask–

Means missed some clusters, found clusters of noise, and often assigned more than one median to a cluster.

Larger, Low-Dimensional Data Set We also ran both algorithms on a data set distributed by the authors

of BIRCH [76], which consists of one hundred, two-dimensional Gaussians in a ten-by-ten grid, with a

thousand points each.k–Means ran, on average, for 298 s (with standard deviation 113 s.) LSEARCH
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Figure 1: Examples ofk–Means and LSEARCH solutions

21



A B C L S T X Y
0.5

1

1.5

2

2.5

3

Dataset Name

E
st

im
at

ed
 A

pp
ro

xi
m

at
io

n 
R

at
io

Local Search vs. K−Means: Ratio To Best−Known SSQ
Local Search
K−Means     

(a)Grid data sets

F G H N V W AA AB
0.8

1

1.2

1.4

1.6

1.8

2

E
st

im
at

ed
 A

pp
ro

xi
m

at
io

n 
R

at
io

Dataset Name

Local Search vs. K−Means: Ratio To Best−Known SSQ
Local Search
K−Means     

(b) Shifted-center data sets

D E I J K M O P Q R U Z
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
st

im
at

ed
 A

pp
ro

xi
m

at
io

n 
R

at
io

Dataset Name

Local Search vs. K−Means: Ratio To Best−Known SSQ
Local Search
K−Means     

(c) Random-center data sets

Figure 2:k–Means vs. LSEARCH on small, synthetic data sets: SSQ
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ran for 1887 s on average (with standard deviation of 836s). The average SSQ ofk–Means solutions was

209077, with standard deviation 5711, whereas for LSEARCH the SSQ was 176136 with standard deviation

337.

Small, High-Dimensional Data Sets We rank–Means and LSEARCH , on 10, 100-to-200-dimensional

data sets. All ten have one thousand points and consist of ten uniform-density, randomly-centered,d-

dimensional hypercubes with edge length two, and five percent noise. For all data sets, the answer found by

k–Means has, on average, four to five times the average cost of the answer found by LSEARCH , which is

always very close to the best-known SSQ. On the other hand,k–Means ran three to four times faster. See

also [67].

In summary The standard deviations of thek–Means costs are typically orders of magnitude larger than

those of LSEARCH , and they are even higher, relative to the best-known cost, than in the low-dimensional

data set experiments. This increased unpredictability may indicate thatk–Means was more sensitive than

LSEARCH to dimensionality.

In terms of running time, LSEARCH is consistently slower, although its running time has very low

variance. LSEARCH appears to run approximately3 times as long ask–Means. As before, if we count

only the amount of time it takes each algorithm to find a good answer, LSEARCH is competitive in running

time and excels in solution quality.

These results characterize the differences between LSEARCH andk–Means. Both algorithms make

decisions based on local information, but LSEARCH uses more global information as well. Because it

allows itself to “trade” one or more medians for another median at a different location, it does not tend to

get stuck in the local minima that plaguek–Means.

5.2 Clustering Streams: Top-Down versus Bottom-Up

STREAM K-means Theorem 6 only guarantees that the performance of STREAM can be bounded if a

constant factor approximation algorithm is run in steps 2 and 4 of STREAM. Despite the fact thatk-means

has no such guarantees, due to its popularity we experimented with runningk-means as the clustering algo-

rithm in Steps 2 and 4. Our experiments compare the performance of STREAM LSEARCH and STREAM

K-Means with BIRCH.

BIRCH compresses a large data set into a smaller one via a CFtree (clustering feature tree). Each leaf of

this tree captures sufficient statistics (namely the first and second moments) of a subset of points. Internal
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nodes capture sufficient statistics of the leaves below them. The algorithm for computing a CFtree tree

repeatedly inserts points into the leaves, provided that the radius of the set of points associated with a leaf

does not exceed a certain threshold. If the threshold is exceeded, a new leaf is created and the tree is

appropriately balanced. If the tree does not fit in main memory then a new threshold is used to create a

smaller tree. The BIRCH paper [76] details the decision making process.

STREAM and BIRCH have a common method of attack: repeated preclustering of the data. However the

preclustering of STREAM is bottom-up, where every substep is a clustering process, whereas the preclus-

tering in BIRCH is top-down partitioning. To put the results on equal footing, we gave both algorithms

the same amount of space for retaining information about the stream. Hence the results compare SSQ and

running time.

Synthetic Data Stream We generated a stream approximately 16MB in size, consisting of 50,000 points

in 40-dimensional Euclidean space. The stream was generated similarly to the high-dimensional synthetic

data sets, except that the cluster diameters varied by a factor of 9, and the number of points by a factor of

6.33. We divided the point set into four consecutive chunks, each of size 4MB, and calculated an upper

bound on the SSQ for each, as in previous experiments, by finding the SSQ for the centers used to generate

the set. We ran experiments on each of the four “prefixes” induced by this segmentation into chunks: the

prefix consisting of the first chunk alone, the first two chunks, the first three chunks, and the entire stream.

As before, we ran LSEARCH andk–Means ten times each on every data set (or CF-tree) on which we

tested them. Since BIRCH and HAC are deterministic, this repetition was not necessary when we generated

CF-trees or ran HAC. Thus we had four choices depending on the clustering algorithm and the preclustering

method. The performance of each algorithm was linear both in error and running time, as expected. In

summary,

� The SSQ achieved by STREAM was2 to 3 times lower than that achieved by the implementation

with BIRCH that used the same clustering algorithm. A possible reason was that the BIRCH CF-trees

usually had one “mega-center,” a point of very high weight, along with a few points of very small

weight; thus incorrectly summarizing the stream.

� STREAM ran2 to 3 times slower than the corresponding implementation using BIRCH. BIRCH

preclusters uses a top-down partitioning, while STREAM uses a slower, bottom-up preclustering

step. The results demonstrate the effect of more accurate decisions in STREAM regarding storing

the summary statistics.
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� STREAM LSEARCH gave nearly optimal quality. This result is unsurprising given the good em-

pirical performance of LSEARCH , discussed in the previous section. The bottom-up approach in

STREAM introduces little extra error in the process, and so the combination finds a near-optimal

solution.

Network Intrusions Clustering, and in particular algorithms that minimize SSQ, are popular techniques

for detecting intrusions [65, 58]. Since detecting intrusions the moment they happen is essential to the

effort to protect a network from attack, intrusions are a particularly fitting application of streaming. Offline

algorithms simply do not offer the immediacy required for successful network protection.

In our experiments we used the KDD-CUP’999 intrusion detection data set which consists of two weeks’

worth of raw TCP dump data for a local area network, simulating a true Air Force environment with occa-

sional attacks. Features collected for each connection include the duration of the connection, the number

of bytes transmitted from source to destination (and vice versa), and the number of failed login attempts.

All 34 continuous attributes out of the total 42 available attributes were selected for clustering. One outlier

point was removed. The data set was treated as a stream of nine 16-MByte-sized chunks. The data was

clustered into five clusters since each point represented one of four types of possible attacks, or non-attack,

normal behavior. The four attacks included denial of service, unauthorized access from a remote machine

(e.g., password guessing), unauthorized access to root, and probing (e.g., port scanning).

The leftmost chart in Figure 4 compares the SSQ of BIRCH-LS with that of STREAMLS; the middle

chart makes the same comparison for BIRCHk–Means and STREAMk–Means. BIRCH’s performance on

the 7th an 9th chunks can be explained by the number of leaves in BIRCH’s CFTree, which appears in the

third chart.

Even though STREAM and BIRCH are given the same amount of memory, BIRCH does not fully take

advantage of it. BIRCH’s CFTree has 3 and 2 leaves respectively even though it was allowed 40 and 50

leaves, respectively. We believe that the source of the problem lies in BIRCH’s global decision to increase

the radius of points allowed in a leaf when the CFTree size exceeds constraints. For many data sets BIRCH’s

decision to increase the radius is probably a good one - it certainly reduces the size of the tree. However,

this global decision can fuse points from separate clusters into the same CF leaf. Running any clustering

algorithm on the fused leaves will yield poor clustering quality; here, the effects are dramatic. In terms of

cumulative average running time, shown in Figure 4, BIRCH is faster. STREAM LS varies in its running

time due to the creation of a weighted data set (Step 1).
9http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Intrusion Detection Stream: SSQ
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Conclusion Overall, the results point to a trade-off between cluster quality and running time. In applica-

tions where speed is of the essence, e.g., clustering web search results, BIRCH appears to do a reasonable

quick-and-dirty job. In applications like intrusion detection or target marketing where mistakes can be costly

our STREAM algorithm exhibits superior SSQ performance.

Acknowledgments We are grateful to Moses Charikar, Umesh Dayal, Aris Gionis, Meichun Hsu, Piotr

Indyk, Andy Kacsmar, Dan Oblinger, and Bin Zhang for their support of this work.

References

[1] D. Achlioptas and F. McSherry. Fast computation of low-rank approximations.Proc. STOC, pages

611–618, 2001.

[2] P. K. Agarwal and C. Procopiuc. Approximation algorithms for projective clustering.Proc. SODA,

pages 538–547, 2000.

[3] R. Agrawal, J.E. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high

dimensional data for data mining applications. InProc. SIGMOD, 1998.

[4] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments.

Proc. STOC, pages 20–29, 1996.

[5] M. Ankerst, M. Breunig, H. Kriegel, and J. Sander. Optics: Ordering points to identify the clustering

structure. InProc. SIGMOD, 1999.

[6] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for euclidean k -medians and related

problems. InProc. STOC, pages 106–113, 1998.

[7] V. Arya, N. Garg, R. Khandekar, K. Munagala, and V. Pandit. Local search heuristic for k-median and

facility location problems. InProc. STOC, pages 21–29, 2001.

[8] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over streaming data.Proc.

SODA, 2002.

[9] Y. Bartal, M. Charikar, and D. Raz. Approximating min-sumk-clustering in metric spaces.Proc.

STOC, 2001.

28



[10] A. Borodin, R. Ostrovsky, and Y. Rabani. Subquadratic approximation algorithms for clustering prob-

lems in high dimensional spaces.Proc. STOC, 1999.

[11] P.S. Bradley, U.M. Fayyad, and C. Reina. Scaling clustering algorithms to large databases. InProc.

KDD, pages 9–15, 1998.

[12] M. Charikar, S. Chaudhuri, R. Motwani, and V. R. Narasayya. Towards estimation error guarantees for

distinct values. InProc.PODS, pages 268–279, 2000.

[13] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic information

retrieval. InProc. STOC, pages 626–635, 1997.

[14] M. Charikar and S. Guha. Improved combinatorial algorithms for the facility location and k-median

problems. InProc. FOCS, pages 378–388, 1999.

[15] M. Charikar, S. Guha,́E. Tardos, and D. B. Shmoys. A constant factor approximation algorithm for

the k-median problem.Proc. STOC, 1999.

[16] F. Chudak. Improved approximation algorithms for uncapacitated facility location.Proc. IPCO, LNCS

1412:180–194, 1998.

[17] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows.

Proc. SODA, 2002.

[18] P. Drineas, R. Kannan, A. Frieze, and V. Vinay. Clustering in large graphs and matrices.Proc. SODA,

1999.

[19] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large

spatial databases. InProc. KDD, pages 226–231, 1996.

[20] F. Farnstrom, J. Lewis, and C. Elkan. True scalability for clustering algorithms. InSIGKDD Explo-

rations, 2000.

[21] T. Feder and D. H. Greene. Optimal algorithms for appropriate clustering.Proc. STOC, pages 434–444,

1988.

[22] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate l1-difference algorithm

for massive data streams.Proc. FOCS, 1999.

29



[23] P. Flajolet and G. Martin. Probabilistic counting algorithms for data base applications.JCSS, 31:182–

209, 1985.

[24] A. Frieze, R. Kannan, and S. Vempala. Fast monte-carlo algorithms for finding low-rank approxima-

tions. Proc. FOCS, 1998.

[25] V. Ganti, J. Gehrke, and R. Ramakrishnan. DEMON: Mining and monitoring evolving data.Knowl-

edge and Data Engineering, 13(1):50–63, 2001.

[26] P. Gibbons and Y. Matias. Synopsis data structures for massive data sets.Proc. SODA, pages S909–

S910, 1999.

[27] A. Gilbert, S. Guha, P. Indyk, Y. Kotadis, S. Muthukrishnan, and M. Strauss. Fast, small-space algo-

rithms for approximate histogram maintanance.Proc. STOC, 2002.

[28] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. How to summarize the universe: Dynamic

maintenance of quantiles.Proc. VLDB, 2002.

[29] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. J. Strauss. Near-optimal sparse fourier

representations via sampling.Proc. STOC, 2002.

[30] M. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries.Proc. SIG-

MOD, 2001.

[31] S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms.Proc. SODA,

pages 649–657, 1998.

[32] S. Guha and N. Koudas. Approximating a data stream for querying and estimation: Algorithms and

performance evaluation.Proceedings of ICDE, 2002.

[33] S. Guha, N. Koudas, and K. Shim. Data-streams and histograms. InProc. STOC, pages 471–475,

2001.

[34] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams. InProc. FOCS, pages

359–366, 2000.

[35] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm for large databases. In

Proc. SIGMOD, pages 73–84, 1998.

30



[36] P. J. Haas, J. F. Naughton, S. Seahadri, and L. Stokes. Sampling-based esitimation of the number of

distinct values of an attribute. InProc. VLDB, pages 311–322, 1995.

[37] J. Han and M. Kimber, editors.Data Mining: Concepts and Techniques. Morgan Kaufman, 200.

[38] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on Data Streams.Digital Equipment

Corporation, TR-1998-011, August 1998.

[39] A. Hinneburg and D. Keim. An efficient approach to clustering large multimedia databases with noise.

In KDD, 1998.

[40] A. Hinneburg and D. Keim. Optimal grid-clustering: Towards breaking the curse of dimensionality in

high-dimensional clustering. InProc. VLDB, 1999.

[41] D. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-center problem.Math of Opera-

tions Research, 10(2):180–184, 1985.

[42] P. Indyk. Sublinear time algorithms for metric space problems. InProc. STOC, 1999.

[43] P. Indyk. A sublinear time approximation scheme for clustering in metric spaces.Proc. FOCS, pages

154–159, 1999.

[44] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream computation.

Proc. FOCS, 2000.

[45] A. K. Jain and R. C. Dubes.Algorithms for Clustering Data. Prentice Hall, 1988.

[46] K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location problem.Proc.

STOC, 2002.

[47] K. Jain and V. Vazirani. Primal-dual approximation algorithms for metric facility location and k-

median problems.Proc. FOCS, 1999.

[48] R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and spectral.Proc. FOCS, pages

367–377, 2000.

[49] O. Kariv and S. L. Hakimi. An algorithmic approach to network location problems, part ii:p-media

ns. SIAM Journal on Applied Mathematics, pages 539–560, 1979.

31



[50] L. Kaufman and P.J. Rousseeuw.Finding Groups in Data. An Introduction to Cluster Analysis. Wiley,

New York, 1990.

[51] L. E. Kavraki, J. C. Latombe, R. Motwani, and P. Raghavan. Randomized query processing in robot

path planning.Journal of Computer and System Sciences, 57:50–60, 1998.

[52] S. Kolliopoulos and S. Rao. A nearly linear-time approximation scheme for the euclidean k-median

problem.Proc. 7th ESA, pages 378–389, 1999.

[53] J. H. Lin and J. S. Vitter. Approximation algorithms for geometric median problems.Information

Processing Letters, 44:245–249, 1992.

[54] J. H. Lin and J. S. Vitter.�-approximations with minimum packing constraint violations.Proc. STOC,

1992.

[55] O. L. Managasarian. Mathematical programming in data mining.Data Mining and Knowledge Dis-

covery, 1997.

[56] G. S. Manku, S. Rajagopalan, and B. Lindsay. Approximate medians and other quantiles in one pass

with limited memory.Proc. SIGMOD, 1998.

[57] G. S. Manku, S. Rajagopalan, and B. Lindsay. Random sampling techniques for space efficient online

computation of order statistics of large datasets.Proc. SIGMOD, 1999.

[58] D. Marchette. A statistical method for profiling network traffic. InProceedings of the Workshop on

Intrusion Detection and Network Monitoring, 1999.

[59] R. Mettu and C. G. Plaxton. The onlike median problem.Proc. FOCS, 2000.

[60] R. Mettu and C. G. Plaxton. Optimal time bounds for approximate clustering.Proc. UAI, 2002.

[61] A. Meyerson. Online facility location.Proc. FOCS, 2001.

[62] P. Mirchandani and R. Francis, editors.Discrete Location Theory. John Wiley and Sons, Inc., New

York, 1990.

[63] N. Mishra, D. Oblinger, and L. Pitt. Sublinear time approximate clustering.Proc. SODA, 2001.

[64] J. Munro and M. Paterson. Selection and Sorting with Limited Storage.Theoretical Computer Science,

pages 315–323, 1980.

32



[65] K. Nauta and F. Lieble. Offline network intrusion detection: Looking for footprints. InSAS White

Paper, 2000.

[66] R.T. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. InProc. VLDB,

pages 144–155, 1994.

[67] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. Streaming-data algorithms for

high-quality clustering.Proceedings of ICDE, 2002.

[68] R. Ostrovsky and Y. Rabani. Polynomial time approximation schemes for geometric k-clustering.

Proc. FOCS, 2000.

[69] C. Procopiuc, M. Jones, P. K. Agarwal, and T. M. Murali. A monte carlo algorithm for fast projective

clustering.Proc. SIGMOD, 2002.

[70] G. Sheikholeslami, S. Chatterjee, and A. Zhang. Wavecluster: A multi-resolution clustering approach

for very large spatial databases. InProc. VLDB, pages 428–439, 1998.
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