
Clustering Data StreamsSudipto Guha � Nina Mishra y Rajeev Motwani z Liadan O'Callaghan xAbstra
tWe study 
lustering under the data stream modelof 
omputation where: given a sequen
e of points, theobje
tive is to maintain a 
onsistently good 
lustering ofthe sequen
e observed so far, using a small amount ofmemory and time. The data stream model is relevantto new 
lasses of appli
ations involving massive datasets, su
h as web 
li
k stream analysis and multimediadata analysis. We give 
onstant-fa
tor approximationalgorithms for the k{Median problem in the data streammodel of 
omputation in a single pass. We also shownegative results implying that our algorithms 
annot beimproved in a 
ertain sense.1 Introdu
tionA data stream is an ordered sequen
e of pointsthat 
an be read only on
e or a small number oftimes. Formally, a data stream is a sequen
e of pointsx1; : : : ; xi; : : : ; xn read in in
reasing order of the in-di
es i. The performan
e of an algorithm that op-erates on data streams is measured by the numberof passes the algorithm must make over the stream,when 
onstrained in terms of available memory, in ad-dition to the more 
onventional measures. The datastream model is motivated by emerging appli
ation in-volving massive data sets, e.g., 
ustomer 
li
k streams,telephone re
ords, large sets of web pages, multime-dia data, and sets of retail 
hain transa
tions 
an bemodeled as data streams. These data sets are far too�Department of Computer S
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large to �t in main memory and are typi
ally storedin se
ondary storage devi
es, making a

ess, parti
u-larly random a

ess, very expensive. Data stream al-gorithms a

ess the input only via linear s
ans with-out random a

ess and only require a few (hopefully,one) su
h s
ans over the data. Furthermore, sin
e theamount of data far ex
eeds the amount of spa
e (mainmemory) available to the algorithm, it is not possiblefor the algorithm to \remember" too mu
h of the datas
anned in the past. This s
ar
ity of spa
e ne
essitatesthe design of a novel kind of algorithm that stores onlya summary of past data, leaving enough memory forthe pro
essing of future data. We remark that this isnot the same as the model of online algorithms.Clustering has re
ently been widely studied a
rossseveral dis
iplines, but only a few of the te
hniques de-veloped s
ale to support 
lustering of very large datasets. A 
ommon formulation of 
lustering is the k{Median problem: �nd k 
enters in a set of n points soas to minimize the sum of distan
es from data pointsto their 
losest 
luster 
enters. Most algorithms for k{Median have large spa
e requirements and involve ran-dom a

ess to the input data. We give 
onstant-fa
torapproximation algorithms for the k{Median problemthat naturally �t into this data stream setting. Ouralgorithms make a single pass over the data and usesmall spa
e. We �rst give a randomized 
onstant-fa
torapproximation algorithm for k{Median, whi
h makesone pass over the data using n� memory (for � < 1)and requires only ~O(nk) time. We also prove thatany deterministi
 k{Median algorithm that a
hieves a
onstant-fa
tor approximation 
annot run in time lessthan 
(nk). Finally, we give a deterministi
 ~O(nk)-time, polylog(n)-approximation single-pass algorithmthat uses n� spa
e, for � < 1.Related Work on Data Streams One of the �rstresults in data streams was the result of Munro andPaterson [16℄, where they studied the spa
e require-ment of sele
tion and sorting as a fun
tion of the num-ber of passes over the data. The model was formal-ized by Henzinger, Raghavan, and Rajagopalan [7℄,who gave several algorithms and 
omplexity results re-1



lated to graph-theoreti
 problems and their appli
a-tions. Other re
ent results on data streams 
an befound in [4, 13, 14, 6℄.Related Work on Clustering In this paper weshall 
onsider models in whi
h 
lusters have a distin-guished point, or \
enter." In the k{Median problem,the obje
tive is to minimize the average distan
e fromdata points to their 
losest 
luster 
enters. The 1{median problem was �rst posed by Weber [17℄. Inthe k{Center problem, the obje
tive is to minimizethe maximum radius of a 
luster. The above problemsare all NP-hard, so we will be 
on
erned with approx-imation algorithms. We will assume that the domainspa
e of points is dis
rete, i.e., the 
luster 
enters mustbe among the input points. The 
ontinuous 
ase isrelated to the dis
rete problem by small fa
tors (seeTheorem 2.1). Throughout the paper we also assumethat the input points are drawn from a metri
 spa
e.In the re
ent past, several approximation algorithmshave been proposed for the k{Median problem [3, 10,2℄. These algorithms require O(n2) spa
e to 
omputethe dual variables or primal 
onstraints. We will beinterested in algorithms whi
h use more than k mediansbut run in linear spa
e [12, 2, 9℄.Charikar, Chekuri, Feder, and Motwani [1℄ gave a
onstant-fa
tor algorithm for the in
remental k{Centerproblem, whi
h is also a single-pass algorithm requir-ing O(nk log k) time and O(k) spa
e. There is a largedi�eren
e, however, between the k{Center and the k{Median problem sin
e a set of k + 1 suitably separatepoints provides a lower bound for the k{Center prob-lem. These points 
an be thought of as a proof of thegoodness of the 
lustering. For the k{Median problem,allowing weighted points, no su
h su

in
t proof existand the optimization problem takes on a more global
hara
ter.Our Results We begin by giving an algorithm thatrequires small spa
e, and then later address the issueof 
lustering in one pass. In Se
tion 2 we give a simplealgorithm based on divide-and-
onquer that a
hievesa 
onstant-fa
tor approximation in small spa
e. Ele-ments of the algorithm and its analysis form the basisfor the 
onstant-fa
tor algorithm given in Se
tion 3.This algorithm runs in time O(n1+�), uses O(n�) mem-ory, and makes a single pass over the data. Next, inSe
tion 4, using randomization, we show how to redu
ethe running time to O(nk) without requiring more thana single pass. In Se
tion 5 we show it is not possibleto obtain any bounded approximation ratio in deter-ministi
 o(nk) time; we also show how to a
hieve a

poly-logn approximation ratio in a single pass in de-terministi
 ~O(nk) time.2 Clustering in Small Spa
eOne of the �rst requisites of 
lustering a data streamis that the 
omputation be 
arried out in small spa
e.Our �rst goal will be to show that 
lustering 
an be
arried out in small (n� for n data points) spa
e, with-out being 
on
erned with the number of passes. Sub-sequently we will see how to implement the algorithmin one pass.In order to 
luster in small spa
e, we investigate al-gorithms that examine the data in a pie
emeal fashion.In parti
ular, we study the performan
e of a divide-and-
onquer algorithm, 
alled Small-Spa
e, that di-vides the data into pie
es, 
lusters ea
h of these pie
es,and then again 
lusters the 
enters obtained (whereea
h 
enter is weighted by the number of points 
loserto it than to any other 
enter). We show that this pie
e-meal approa
h is good, in that: if we had a 
onstant-fa
tor approximation algorithm, running it in divide-and-
onquer fashion would still yield a (slightly worse)
onstant-fa
tor approximation. We then propose an-other algorithm (Smaller-Spa
e) that is similar to thepie
emeal approa
h ex
ept that instead of re
luster-ing only on
e, it repeatedly re
lusters weighted 
en-ters. For this algorithm, we prove that if we re
lustera 
onstant number of times, a 
onstant-fa
tor approxi-mation is still obtained, although, as expe
ted, the 
on-stant fa
tor worsens with ea
h su

essive re
lustering.The advantage of Small(er)-Spa
e is that we sa
ri�
esomewhat the quality of the 
lustering approximationto obtain an algorithm uses mu
h less memory.
2.1 Simple Divide-and-Conquer and Separability

TheoremsWe start with the version of the algorithm thatre
lusters only on
e. Elements of the algorithm andits analysis will be used in a bla
k-box manner in thealgorithms in the rest of the paper.Algorithm Small-Spa
e(S)1. Divide S into l disjoint pie
es �1; : : : ; �l.2. For ea
h i, �nd O(k) 
enters in �i. Assignea
h point in �i to its 
losest 
enter.3. Let �0 be the O(lk) 
enters obtained in (2),where ea
h 
enter 
 is weighted by the num-ber of points assigned to it.4. Cluster �0 to �nd k 
enters.2



Sin
e we are interested in 
lustering in small spa
e,l will be set so that both S and �0 �t in main memory,if possible. If S is very large, no su
h l may exist { wewill address this issue later.Before analyzing algorithm Small-Spa
e, we de-s
ribe the relationship between the dis
rete and 
on-tinuous 
lustering problem. The following is folkloreand is in
luded for 
ompleteness.Theorem 2.1 Given an instan
e of the k-medianproblem with a solution of 
ost C, where the mediansmay not belong to the set of input points, there existsa solution of 
ost 2C where all the medians belong tothe set of input points.Proof: Consider the solution of 
ost C, and let thepoints j1; : : : ; jq be assigned to median i. Sin
e mediani may not be in the input, 
onsider the point jl whi
his 
losest to i as the median (instead of i). Thus theassignment distan
e of every point jr at most doubles,sin
e 
jrjl 
an be bounded by 
jli + 
jri (where 
xydenotes the distan
e from x to y). Over all n points inthe original set, the assignment distan
e 
an at mostdouble, summing to at most 2C. 2The following separability theorem sets the stage fora divide-and-
onquer algorithm. This theorem 
arriesover to other 
lustering metri
s su
h as the sum ofsquared distan
es.Theorem 2.2 Consider any set of n points arbitrarilypartitioned into disjoint sets �1; : : : ; �`. The sum ofthe optimum solution values for the k-median problemon the ` sets of points is at most twi
e the 
ost of theoptimum k-median problem solution for all n points. 1Proof: Consider the medians used for the optimumk-median solution. If ea
h partition uses these medi-ans, the 
ost of the solution will be exa
tly the 
ostof the optimal solution. This follows sin
e the obje
-tive fun
tion for k-median is the sum of distan
es tothe nearest median for every point. However the setof medians 
hosen by the optimum solution need notbe present in a partition. But in the 
ase where themedians points 
an be arbitrary points in the spa
e,the above theorem is proved.In 
ase we have to 
hoose the medians from the givenset of points, the medians used by the optimum solu-tion will not be available to every partition. In this
ase use Theorem 2.1 to 
onstru
t a solution whi
h isat most 2 times the 
ost of the optimum solution. 21The fa
tor 2 is avoided in the Eu
lidean 
ase if we allow thatmedians 
an be arbitrary points in spa
e, rather than requiringthat they be points from the original data set.

Next we show that the new instan
e, where all thepoints i that have median i0 shift their weight to thepoint i0 (i.e., the weighted O(lk) 
enters S0 in Step 2 ofAlgorithm Small-Spa
e), has a good feasible 
lusteringsolution. Noti
e that the set of points in the new in-stan
e is mu
h smaller and may not even 
ontain themedians of the optimum solution.Theorem 2.3 If the sum of the 
osts of the l optimumk{median solutions for �1; : : : ; �l is C and if C� is the
ost of the optimum k{median solution for the entireset S, then there exists a solution of 
ost at most 2(C+C�) to the new weighted instan
e �0. 2Proof: As in the proof of the previous theorem, wewill 
onsider the k medians in the optimum 
ontinuoussolution.Let the median to whi
h i0 is assigned to in the op-timum 
ontinuous solution for �0 be �(i0). Further, letdi0 be the number of points assigned to the median i0.The 
ost of �0 
an be expressed asPi0 
i0�(i0)di0 (whereagain 
xy is the distan
e from x to y). Ea
h point i0in the new instan
e �0 
an be viewed as a 
olle
tion ofpoints, namely those points i assigned to the median i0.Thus the 
ost of �0 
an also be expressed asPi 
i0�(i0).Let the median to whi
h i is assigned to in the op-timum 
ontinuous solution for S be �(i). The 
ost ofthe new instan
e �0 is no more than Pi 
i0�(i) sin
e �is optimum for �0. This sum is in turn bounded byPi(
i0i+
i�(i)). The �rst term summed over all pointsi evaluates to C and the se
ond term evaluates to C�.Thus we showed an assignment to the medians of theoptimal solution at 
ost C + C�. Using Theorem 2.1,the theorem follows. (Note that the theorem 
an alsobe shown to hold when the original points in S areweighted.) 2We now show that if we run a bi
riteria (a; b)-approximation algorithm (where at most ak mediansare output with 
ost at most b times the optimum k{Median solution) in Step 2 of Algorithm Small-Spa
eand we run a 
-approximation algorithm in Step 4,then the resulting approximation by Small-Spa
e 
anbe suitably bounded.Theorem 2.4 The algorithm Small-Spa
e has an ap-proximation fa
tor of 2
(1 + 2b) + 2b.Proof: Let the optimal k-median solution be of 
ostC�. Then the 
ost of the solution C at the end of the�rst stage is at most 2bC�. This is true due to Theo-rem 2.2, sin
e we are adding the 
ost of the solutionsto ea
h partition, ea
h of whi
h is a b-approximation2Again, the fa
tor 2 is avoided if we use the Eu
lidean distan
eand allow medians to be arbitrary points.3



for that partition. Now by Theorem 2.3, there ex-ists a solution to the k-median problem on the mod-i�ed instan
e of 
ost 2(C + C�). Sin
e we have a 
-approximation, we have a solution of 
ost 2
(1+2b)C�to the modi�ed instan
e. The theorem is obtained bysumming the two 
osts. 2The bla
k-box nature of this algorithm will allow usto devise a new divide-and-
onquer algorithm.
2.2 Divide-and-Conquer StrategyWe now generalize Small-Spa
e so that the algo-rithm re
ursively 
alls itself on a su

essively smallerset of weighted 
enters.Algorithm Smaller-Spa
e(S,i)1. Divide S into l disjoint pie
es �1; : : : ; �l.2. For ea
h i, �nd O(k) 
enters in �i. Assignea
h point in �i to its 
losest 
enter.3. Let �0 be the O(lk) 
enters obtained in (2),where ea
h 
enter 
 is weighted by the num-ber of points assigned to it.4. Call Algorithm Smaller-Spa
e(�0; i� 1).We 
an 
laim the following.Theorem 2.5 For 
onstant i, Algorithm Smaller-Spa
e(S; i) gives a 
onstant-fa
tor approximation to thek{Median problem.Proof: Assume that the approximation fa
tor for thejth level is Aj . From Theorem 2.2 we know that the
ost of the solution of the �rst level is 2b times opti-mal. From Theorem 2.4 we get that the approximationfa
tor Aj would satisfy a simple re
urren
e,Aj = 2Aj�1(2b+ 1) + 2bThe solution of the re
urren
e is 
 � (2(2b+ 1))j . Thisis O(1) given j is a 
onstant. 2Sin
e the intermediate medians in �0 must be storedin memory, the number of subsets l that we partitionS into is limited. In parti
ular, if the size of mainmemory is M , then we would need to partition S intol subsets so that ea
h subset �ts in main memory, i.e.,(n=l) � M and so that the weighted lk 
enters in �0also �t in main memory, i.e., lk � M . Su
h an l maynot always exist.In the next se
tion we will see a way to get aroundthis problem. In fa
t we will be able to implement thehierar
hi
al s
heme more 
leverly and obtain a 
luster-ing algorithm for an interesting model of 
omputation.

We have two themes to develop this idea. The �rst is todo away with the storage of the intermediate medians,and the se
ond is to design a more interesting re
ur-sive algorithm. We take up the former and relegate these
ond to a later se
tion.3 The Data Stream ModelUnder the Data Stream Model, 
omputation takespla
e within bounded spa
e M and the data 
an onlybe a

essed via linear s
ans (i.e., a data point 
an beseen only on
e in a s
an, and points must be viewed inorder).In this se
tion we will modify the multi-level algo-rithm to operate on data streams. We will present aone-pass, O(1)-approximation in this model assumingthat the bounded memory M is not too small, morespe
i�
ally n� where n denotes the size of the stream.This model and the line of analysis have similaritiesto in
remental 
lustering and online models. Howeverour approa
h will be a bit di�erent. We will maintaina forest of assignments. We will 
omplete this to ktrees, and all the nodes in a tree will be assigned to themedian denoted by the root of the tree. First we willshow how to solve the problem of storing intermediatemedians. Next we will inspe
t the spa
e requirementsand running time.Data Stream Algorithm To a
hieve this, we willmodify our multi-level algorithm slightly. The algo-rithm will be the following:1. Input the �rst m points; use a bi
riterion algo-rithm to redu
e these to O(k) (say 2k) points.As usual, the weight of ea
h intermediate medianis the number of points assigned to it in the bi-
riterion 
lustering. (Assume m is a multiple of2k.) This requires O(f(m)) spa
e, whi
h for a pri-mal dual algorithm 
an be O(m2). We will see aO(mk)-spa
e algorithm later.2. Repeat the above till we have seen m2=(2k) of theoriginal data points. At this point we have m in-termediate medians.3. Cluster these m �rst-level medians into 2k se
ond-level medians and pro
eed.4. In general, maintain at most m level-i medians,and, on seeing m, generate 2k level-i+1 medians,with the weight of a new median as the sum ofthe weights of the intermediate medians assignedto it.5. When we have seen all the original data points (orwe want to have a 
lustering of the points we have4



seen so far) we 
luster all the intermediate mediansinto k �nal medians.Note that this algorithm is identi
al to the multi-levelalgorithm des
ribed before.The number of levels required by this algorithm is atmost O(log(n=m)= log(m=k)). If we have k � m andm = O(n�) for some 
onstant � < 1, we have an O(1)-approximation. Using linear programming or primaldual algorithms we will have m = pM where M isthe memory size (ignoring fa
tors due to maintainingintermediate medians of di�erent levels). We arguedthat the number of levels would be a 
onstant whenm = n� and hen
e when M = n2� for some � < 1=2.Linear Spa
e Clustering The approximation qual-ity whi
h we 
an prove (and intuitively the a
tual qual-ity of 
lustering obtained on an instan
e) will dependheavily on the number of levels we have. From thisperspe
tive it is pro�table to use a spa
e-eÆ
ient algo-rithm.We 
an use the lo
al sear
h algorithm in [2℄ to pro-vide a bi
riterion approximation in spa
e linear in m,the number of points 
lustered at a time. The ad-vantage of this algorithm is that it maintains only anassignment and therefore uses linear spa
e. Howeverthe 
ompli
ation is that for this algorithm to a
hievea bounded bi
riterion approximation, we need to set a\
ost" to ea
h median used, so that we penalize if manymore than k medians are used. The algorithm solves afa
ility lo
ation problem after setting the 
ost of ea
hmedian to be used. However this 
an be done by guess-ing this 
ost in powers of (1+ 
) for some 0 < 
 < 1=6and 
hoosing the best solution with at most 2k medi-ans. In the last step, to get k medians we use a twostep pro
ess to redu
e the number of medians to 2kand then use [10, 2℄ to redu
e to k. This allows us to
luster with m = M points at a time provided k2 �M .The Running Time The running time of this 
lus-tering is dominated by the 
ontribution from the �rstlevel. The lo
al sear
h algorithm is quadrati
 and thetotal running time is O(n1+�) where M = n�. We ar-gued before, however, that � will not be very small andhen
e the approximation quality whi
h we 
an provewill remain small.We therefore 
laim the following theorem,Theorem 3.1 We 
an solve the k{Median problem ona data stream with time O(n1+�) and spa
e �(n�) up toa fa
tor 2O( 1� ).We have two avenues to pursue. The running timewill be lower-bounded by the spa
e we require, and we

improve this bottlene
k to get linear spa
e 
lustering,but �rst, to a
hieve s
alability, our goal will be to get
lustering in time ~O(nk). This will mean an amortizedupdate of O(k polylog(n)). In the next se
tion we willmotivate how to a
hieve this, and provide eviden
e thatours is a hard bound for the running time of a 
lusteringalgorithm.The se
ond issue is to present an algorithm withapproximation guarantee whi
h is polynomial in 1� . Wewill show how to a
hieve this in Se
tion 5.4 Clustering Data Streams in ~O(nk)TimeLet us re
all the algorithm we have developed so far.We have k2 � M , and we are applying an alternateimplementation of a multi-level algorithm.We are 
lusteringm = O(M) (assumingM = O(n�)for 
onstant � > 0) points and storing 2k medians to\
ompress" the des
ription of these data points. Weuse the lo
al sear
h-based algorithm in [2℄. We keeprepeating this pro
edure till we see m of these des
rip-tors or intermediate medians and 
ompress them fur-ther into 2k. Finally, when we are required to outputa 
lustering, we 
ompress all the intermediate medi-ans (over all the levels there will be at most O(M)of them) and get O(k) penultimate medians whi
h we
luster into exa
tly k using the primal dual algorithmas in [10, 2℄.
4.1 Earlier Work on Clustering in ~O(nk) TimeWe will use the results in [9℄ on metri
 spa
e algo-rithms that are subquadrati
. The algorithm as de-�ned will 
onsist of two passes and will have 
onstantprobability of su

ess. For high probability results, thealgorithm will make O(logn) passes. As stated, thealgorithm will only work if the original data points areunweighted. Consider the following algorithm:1. Draw a sample of size s = pnk.2. Find k medians from these s points using the pri-mal dual algorithm in [10℄.3. Assign ea
h of the n original points to its 
losestmedian.4. Colle
t the n=s points with the largest assignmentdistan
e.5. Find k medians from among these n=s points.6. We have at this point 2k medians.Theorem 4.1 [9℄ The above algorithm gives an O(1)approximation with 2k medians with 
onstant probabil-ity.5



The above algorithm3 provides a 
onstant-fa
tor ap-proximation for the k{Median problem (using 2k me-dians) with 
onstant probability. Repeat the aboveexperiment O(logn) times for high probability. Wewill not run this algorithm by itself, but as a substepin our algorithm. The algorithm requires ~O(nk) timeand spa
e. Using this algorithm with the lo
al sear
htradeo� results in [2℄ redu
es the spa
e requirement toO(pnk).Alternate sampling-based results exist for the k{Median measure that do extend to the weighted 
ase[15℄, however these results assume Eu
lidean spa
e.
4.2 Extension to the Weighted CaseWe need this sampling-based algorithm to work onweighted input. It is ne
essary to draw a random sam-ple based on the weights of the points; otherwise themedians with respe
t to the sample do not 
onvey mu
hinformation. The simple idea of sampling points withrespe
t to their weights does not help. The philosophyof the above method is that a random sample will bereasonable for most points, that there will not be manyoutliers (at most n divided by the sample size, up to
onstants), and that in the se
ond phase it is suÆ
ientto a

ount for these outliers.If the points have weights, however, in the �rst stepwe may only eliminate k points. Therefore samplinga

ording to weights does not 
arry through. Contrastthis with the algorithm in [5℄ where the points were inEu
lidean spa
e and the measure was sum of squaresof distan
es. Both these fa
ts were 
ru
ial for theiralgorithm.We suggest the following modi�
ation. The basi
idea is s
aling. We 
an round the weights to the near-est power of (1 + �) for � > 0. In ea
h group we 
anignore the weight and lose a (1+�) fa
tor. Sin
e we havean ~O(nk) algorithm, summing over all groups, the run-ning time is still ~O(nk). The 
orre
t way to implementthis is to 
ompute the exponent values of the weightsand use only those groups whi
h exist, otherwise therunning time will depend on the largest weight.
4.3 The Full AlgorithmWe will use this sampling-based s
heme to develop aone-pass and O(nk)-time algorithm that requires onlyO(n�) spa
e.3The algorithm presented here, without the last step, is es-sentially the same as in [9℄, however the primal dual algorithmwhi
h requires O(n2) time to solve k{Median problem was notknown when the result was published. The result proved thereinwas using O(n2k2) lo
al sear
h algorithm in [12℄ whi
h was abi
riterion approximation.

� Input the �rst O(M=k) points, and use the ran-domized algorithm above to 
luster this to 2k in-termediate median points.� Use a lo
al sear
h algorithm to 
luster O(M) in-termediate medians of level i to 2k medians of leveli+ 1.� Use the primal dual algorithm of Jain and Vazirani[10℄ to 
luster the �nal O(k) medians to k medians.Noti
e that the algorithm remains one pass, sin
ethe O(logn) iterations of the randomized subalgorithmjust add to the running time. Thus, over the �rst phase,the 
ontribution to the running time is ~O(nk). Overthe next level, we have nkM points, and if we 
lusterO(M) of these at a time taking O(M2) time, the totaltime for the se
ond phase is O(nk) again. The 
on-tribution from the rest of the levels de
reases geomet-ri
ally, so the running time is ~O(nk). As shown inthe previous se
tions, the number of levels in this algo-rithm is O(logMk n), and so we have a 
onstant-fa
torapproximation for k �M = �(n�) for some small �. 4Thus we 
laim the following theorem,Theorem 4.2 The k{Median problem has a 
onstant-fa
tor approximation algorithm running in timeO(nk logn), in one pass over the data set, using n�memory, for small k.5 Lower Bounds and Deterministi
 Al-gorithmsIn this se
tion we explore whether our algorithms
ould be speeded up further and whether randomiza-tion is needed. For the former, note that we have a
lustering algorithm that requires time ~O(nk) and anatural question is 
ould we have done better? We'llshow that we 
ouldn't have done mu
h better sin
ea deterministi
 lower bound for k{Median is 
(nk).Thus, modulo randomization, our time bounds prettymu
h mat
h the lower bound. For the latter, we showone way to get rid of randomization that yields a sin-gle pass, small memory k{Median algorithm that is apoly-logn approximation. Thus we do also have a de-terministi
 algorithm, but with more loss of 
lusteringquality.
5.1 Lower BoundsWe now show that any 
onstant-fa
tor determinis-ti
 approximation algorithm requires 
(nk) time. We4We 
ould have used the sampling-based algorithm in theintermediate steps as well, however su
h a re
ursive, sampling-based algorithm will have greater errors, in theory and very likelyin pra
ti
e.6



measure the running time by the number of times thealgorithm queries the distan
e fun
tion.We 
onsider a restri
ted family of sets of pointswhere there exists a k-
lustering with the propertythat the distan
e between any pair of points in thesame 
luster is 0 and the distan
e between any pairof points in di�erent 
lusters is 1. Sin
e the optimumk-
lustering has value 0 (where the value is the dis-tan
e from points to nearest 
enters), any algorithmthat doesn't dis
over the optimum k-
lustering doesnot �nd a 
onstant-fa
tor approximation.Note that the above problem is equivalent to thefollowing Graph k-Partition Problem: Given a graphG whi
h is a 
omplete k-partite graph for some k, �ndthe k-partition of the verti
es of G into independentsets. The equivalen
e 
an be easily realized as follows:The set of points fs1; : : : ; sng to be 
lustered naturallytranslates to the set of verti
es fv1; : : : ; vng and there isan edge between vi; vj i� dist(si; sj) > 0. Observe thata 
onstant-fa
tor k-
lustering 
an be 
omputed with tqueries to the distan
e fun
tion i� a graph k-partition
an be 
omputed with t queries to the adja
en
y matrixof G.Kavraki, Latombe, Motwani, and Raghavan [8℄ showthat any deterministi
 algorithm that �nds a Graph k-Partition requires 
(nk) queries to the adja
en
y ma-trix of G. This result establishes a deterministi
 lowerbound for k{Median.Theorem 5.1 A deterministi
 k{Median algorithmmust make 
(nk) queries to the distan
e fun
tion toa
hieve a 
onstant-fa
tor approximation.
5.2 Deterministic Algorithms Requiring ~O(nk)

TimeOne natural question we 
an ask is what we 
ana
hieve without randomization. We have already seenhow to get an O(n1+�)-time 
lustering algorithm thatuses n� spa
e and gives a 
onstant-fa
tor approxima-tion. However this 
onstant fa
tor grows as 2 1� , and ifwe were to ask for an ~O(nk)-time algorithm we wouldhave an approximation fa
tor polynomial in (n=k).Modifying our approa
h slightly, we 
an show the fol-lowing:Theorem 5.2 In ~O(nk) deterministi
 time, we havea poly-logn approximation for the k{Median problemin n� spa
e and a single pass.Proof: First we will have to 
onstru
t an algorithmthat runs in time ~O(nk). Then we 
an redu
e the spa
erequired in the same way as for the previously des
ribedrandomized algorithm.

Consider the primal-dual algorithm that gives a
onstant-fa
tor (say 
) approximation for the k{Median problem. This algorithm takes time (andspa
e) an2 for some 
onstant a. Consider the followingalgorithm, whi
h we will 
all A1: partition the n origi-nal points into p1 equal-size subsets, apply the primal-dual algorithm to ea
h of these subsets, and then applyit to the p1k weighted points so obtained, to get k �nalmedians. If we 
hoose p1 = (n=k) 23 , the running time ofA1 is 2an 43 k 23 , and the spa
e required is 2an 43 k 23 also.By Theorem 2.4 we have an approximation of 4
2+4
.Now de�ne A2 to split the dataset into p2 partitionsand apply A1 on ea
h of them and on the resultingintermediate medians (noti
e we 
an easily ensure animplementation to get a one-pass algorithm). Solvingto minimize the running time will yield p2 = (n=k)4=5.Therefore the running time and spa
e required bothbe
ome 4an 1615 k 1415 .If we 
ontinue this pro
ess so that Ai 
alls Ai�1on pi partitions, we 
an prove without mu
h diÆ
ultythat the running time and the spa
e required by thealgorithm will both be a2in�1+ 122i�1�1�k�1� 122i�1�1�.However the approximation fa
tor 
i grows as 
i =4
2i�1 + 4
i�1.To get the exponent of n in the running time to be 1,it is suÆ
ient to have i = �(log log logn). This makesthe running time nk (hiding poly log logn fa
tors) andgives approximation O(logp n) sin
e the approximationfa
tor is 42i . Thus we have a poly-logn approximationin ~O(nk) spa
e and time. Now we 
an use this in ourprevious algorithm to get an O(logp n) approximationin n� spa
e and ~O(nk) time, without using randomiza-tion. 2The above a
tually shows that we have an O(n1+�)-time 
lustering with approximation guarantee polyno-mial in 1� . Combining this with Theorem 3.1 we getthe following,Theorem 5.3 The k{Median problem 
an be approxi-mated in time ~O(n1+�Æ) and spa
e �(nÆ) up to a fa
torof O(poly( 1� )2 1Æ ).A
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