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ABSTRACT 
 
Complex queries over high speed data streams often need to rely 
on approximations to keep up with their input.  The research 
community has developed a rich literature on approximate 
streaming algorithms for this application.  Many of these 
algorithms produce samples of the input stream, providing better 
properties than conventional random sampling.  In this paper, we 
abstract the stream sampling process and design a new stream 
sample operator. We show how it can be used to implement a 
wide variety of algorithms that perform sampling and sampling-
based aggregations.  Also, we show how to implement the 
operator in Gigascope - a high speed stream database specialized 
for IP network monitoring applications. As an example study, we 
apply the operator within such an enhanced Gigascope to perform 
subset-sum sampling which is of great interest for IP network 
management.  We evaluate this implemention on a live, high 
speed internet traffic data stream and find that (a) the operator is a 
flexible, versatile addition to Gigascope suitable for tuning and 
algorithm engineering, and (b) the operator imposes only a small 
evaluation overhead. This is the first operational implementation 
we know of, for a wide variety of stream sampling algorithms at 
line speed within a data stream management system. 

1. INTRODUCTION 
 

Many applications, such as network monitoring, financial 
monitoring, sensor networks, and the processing of large scale 
scientific data feeds, produce data in the form of high-speed 
streams.  A query set which analyzes these streams might and 
often does resort to approximation algorithms in order to keep up 
with the worst case load.  The research community has developed 
a large body of work to approximate expensive functions on data 
streams. Examples include approximation algorithms for 
quantiles, heavy hitters, set resemblance, count distinct, and so on. 
See [4] for an overview of data stream research. 

We focus on sampling methods for data streams. A sample is a 
small-sized representative of the data suitable for different 
purposes. Sampling has a rich history in statistics with several 
variants: sampling with/without replacement, biased sampling, 
fixed or variable size sampling etc. There is also extensive use of 
sampling in databases with many modified methods such as 
stratified, congressional, outliner or distance-based sampling etc. 
[6].   Sampling in the context of data streams shares some 
common aspects with sampling in statistics and databases, but has 
additional constraints. In stream sampling, typically one is 
interested in sampling in one pass over a high speed data that can 
not be stored at its matching rate. As a result, when an item 
repeats on the stream, it is difficult to sample based on whether or 
not it has been seen before. So, even uniform sampling of the 
distinct items in the data stream is tricky. Further, one may need 
to obtain fixed-sized sample when the size of the stream is 
unknown. Finally, stream input has many attributes and items are 
often ``weighted’’ and it is difficult to ensure that the sample has 
desirable properties - such as it captures the  heavy hitters or sub-
range aggregates - accurately for various subset combinations of 
attributes and cumulative weights on these combinations. The past 
few years have seen the design of many effective stream sampling 
methods for estimating specific aggregates such as quantiles [18], 
heavy hitters [3], distinct counts [19], subset-sums [2], set 
resemblance and rarity [10] etc. as well as generic sampling such 
as fixed-size reservoir  sampling [1],  adaptive geometric  
sampling [7][8],  etc.  

The focus of this paper is not to design new stream sampling 
methods. Instead, we address the problem of how these widely 
varied and quite sophisticated sampling methods can be 
implemented within an operational data stream management 
system and scale in performance to line speeds in IP network 
monitoring applications. The problem we address in this paper is 
to incorporate approximate streaming algorithms into a DSMS, 
specifically sampling-based algorithms.   

Possible Approaches: There are several approaches to doing this 
integration, which we discuss here.   

The first approach is to incorporate the different sampling 
algorithms directly into the DSMS kernel, and make the option of 
using them available to the user through several keywords. This 
approach is attractive when the special techniques being 
incorporated into the database engine are mature, for example data 
mining keywords in SQL Server 2005 [11], windowing keywords 
in SQL 99 [12], and so on.  However, stream sampling algorithms 
is an active research area with new techniques being continually 
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developed.  Incorporating new techniques into the kernel is 
cumbersome and does not promote experimentation.  In addition, 
the query language is burdened with a keyword explosion. Aurora 
incorporates a DROP operator which performs random sampling 
to shed load [13]; STREAM also provides operator-level 
sampling via a SAMPLE keyword [19]. 

The second approach is to implement individual stream sampling 
algorithms with User Defined Aggregate Functions (UDAF).  This 
approach was explored in [14] for one of the methods, namely, 
approximating heavy hitter frequency counts by sampling [3]. 
While the UDAF approach is useful for obtaining point values 
(e.g., the median packet length), it is cumbersome at best for 
obtaining set values.  For example, to obtain set of destination IP 
addresses responsible for at least 1% of traffic using the UDAF 
approach, we could write a query with 100 references to the heavy 
hitters UDAF (one for each of the possible 100 heavy hitters) in 
the SELECT clause, pivot [15] the result to get the set value, and 
filter out invalid values.  While set results are not inherently better 
than point results, many applications require set results as their 
input.  In addition, some algorithms, such as subset-sum sampling 
[2] are better expressed as a sampling query. ATLaS [22] is a 
system in which a UDAF is specified in SQL.  Its set-oriented 
nature makes set-valued return results possible.  As will be 
evident later, our operator is in some ways a highly structured 
version of an ATLaS UDAF.  The structure we impose enables the 
simple expression of many algorithms, and a highly efficient 
evaluation process. 

The third and related approach is to provide for User Defined 
Operators (UDOs) which consume input streams and produce 
output streams, one for each of the stream sampling methods. 
Some DSMSs provide a mechanism to incorporate UDOs, 
including Aurora [13] and Gigascope [21].  Aurora is built as a 
system of interconnecting operators, and by nature supports 
UDOs. Gigascope has special facilities for incorporating UDOs 
into a query set. However, writing and supporting a DSMS 
operator is a difficult and error-prone task and does not scale with 
the number of different stream sampling methods of interest. Our 
discussions with the Gigascope implementers indicated that few 
ODOs had been written, and only as a last resort. 

Our Approach: The approach we take in this paper is to develop 
a single operator which can be specialized to implement a wide 
variety of stream sampling algorithms.  The advantage of this 
approach is that it encourages experimentation and development 
of new streaming algorithms and their rapid deployment for 
practical applications. The functions which support the streaming 
algorithm using the operator for different problems can be written 
by the algorithmic expert, following a simple API.  The developer 
is not burdened with the details of kernel integration or stream 
operator development. Our contributions are as follows.  

• We abstract an operator construct and define its 
semantics. We show that this generic operator can be 
used to implement wide variety of stream sampling 
algorithms including the reservoir sampling [1], subset-
sum sampling [2], min-wise hash sampling [10], heavy 
hitter algorithm [3], and many others.  

• We show how to implement the generic operator in a 
data stream management system (DSMS). The sample 
operator is invoked using special keywords in a 
grouping and aggregation query.  We detail an efficient 

templatized implementation of the sample operator. 
These constructs, as well as STATEFUL functions we 
introduce, may be of independent interest in 
conventional data warehouse DBMSs because of their 
ability to support approximation queries.  

• We perform an experimental study by implementing our 
sampling operator in the Gigascope DSMS.  We use 
this implementation to present a detailed study of one of 
the stream sampling algorithms of great interest to IP 
network management, namely, subset-sum sampling [2] 
that is operationally used for performance monitoring  
in AT&T’ s IP backbone and for customer reports. Our 
implementation works at line speed and is now part of 
the Gigascope release; it shows that the computational 
and memory overhead is very small. In addition, our 
experience with real data revealed its burstiness and led 
to a small fix in the subset-sum stream sampling 
algorithm that substantially improved its performance. 
The ability to do such easy tuning and engineering is 
one of the attractions of our approach.  

Our operator is specifically targeted at stream sampling algorithms 
and can be used to implement scores of them. In the paper, we 
have chosen to focus on four representatives: reservoir sampling 
for standard fixed-size sampling on streams, heavy hitter 
algorithm from the database community, min-wise hash sampling 
from the algorithms community and subset-sum sampling from 
the networking community.  We believe our work is the first to 
operational implementation we know of, for a widely variety of 
stream sampling algorithms at line speed within a DSMS. 

Map: In Section 2, we discuss related work. In Section 3, we 
provide an overview of the Gigascope DSMS. In Section 4, we 
present an overview of the four stream sampling methods above 
and describe their common framework. In Section 5, we present 
our operator and show how it can be used generically to 
implement different stream sampling algorithms. In Section 6 we 
discuss STATEFUL functions, SUPERGROUPs and show how to 
implement our operator in Gigascope. In Section 7, we present 
our experimental study. Conclusions are in Section 8.  

 

2. RELATED WORK 
 

Sampling has an extensive history in statistics and relational 
databases. We focus on stream sampling. As mentioned earlier, a 
number of specific sampling algorithms have been designed for 
quantiles [18], heavy hitters [3], distinct counts [19], subset-sums 
[2], set resemblance and rarity [10], geometric sampling for range 
counting [7] and adaptive sampling for convex hulls [8], etc. 
Many of these have been implemented and tested on reasonable 
streams, but few, to the best of our knowledge, on IP network line 
speeds at which packets are forwarded. In [14], the authors 
implemented the heavy hitters’  algorithm [3] as a UDAF in line 
speed. In [2] the subset-sum sampling method is implemented at 
IP flow speeds and not at packet speeds; flows are several orders 
of magnitude aggregated from packet streams. 
There are a number of DSMSs being developed: Aurora [13], 
STREAM [19], Gigascope [21], TelegraphCQ [17], NiagaraCQ 
[16], etc. Many of them support random sampling, including the 
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DROP operator of Aurora, the SAMPLE keyword in STREAM, 
and sampling functions in Gigascope. Still, these are uniform 
sampling operators. We do not know of prior work on these 
systems that systematically implemented a variety of sophisticated 
stream sampling methods.  

 

3. GIGASCOPE 
 
In this section, we briefly review some relevant aspects of the 
Gigascope DSMS and its architecture.  The interested reader is 
referred to [21][14] for a more complete description. 

A primary requirement of a DSMS is to provide a way to unblock 
otherwise blocking operators such as aggregation and join.  
Different DSMSs take different approaches, but in general they 
provide a way to define a window on the data stream on which the 
query evaluation will occur at any moment in time.  In Gigascope, 
one or more attributes of a data stream are marked as being 
ordered.  Query evaluation windows are determined by analyzing 
how a query references the ordered attributes.  For example, 
consider the following schema. 

PKT(time increasing, srcIP, destIP, len) 

The time attribute is marked as being ordered, specifically 
increasing.  Then the following query computes the sum of the 
length of packets between each source and destination IP address 
for every minute 

Select tb, srcIP, destIP, sum(len) 
From PKT 
Group by time/60 as tb, srcIP, destIP 

In order to obtain high performance in data reduction, Gigascope 
has a two level architecture (see Figure 1).  Query nodes which 
are fed by source data streams (e.g., packets sniffed from a 
network interface) are called low level queries, while all other 
query nodes are called high level queries.  Data from a source 
stream is fed to the low level queries from a ring buffer without 
copying.  Previous work [14][21] has shown that early data 
reduction by low level queries is critical for high performance. 

 

• Use early data 
reduction to handle 
very high speed 
data streams.

• Low-level queries
perform initial fast 
selection and 
aggregation on 
high speed stream.

• Fixed-size buffers 
at the low level

• Finalize 
aggregation in post 
processing. 

NIC

Ring Buffer

Low Low Low

High High

App

 
Figure 1.  Gigascope architecture. 

 

4. STREAM SAMPLING ALGORITHMS 
 

Recall that while approximate stream algorithms can be 
implemented as UDAFs, they return point values rather than set 
values.  That is, to return samples s1,ss,…,sk associated with group 
G, they return data in a schema such as (G, S1, S2, …, Sn) rather 
than as (G, S).   When we considered the problem of 
incorporating stream sampling algorithms which return set results 
into a DSMS, we observed that a large class of these algorithms 
has a similar control structure.  In this section, we survey a 
representative selection of stream algorithms to illustrate their 
common structure. 

4.1 Reservoir Sampling 
 

The reservoir sampling algorithm [1] solves the problem of 
selecting a random sample of size n from a pool of N records, 
where the value of N is unknown. Let T be a tolerance parameter, 
where 10 < T < 40; t denote the number of data records processed 
so far. The current set of candidates for the final sample is stored 
in the array C. The basic idea of reservoir sampling algorithm can 
be described as follows: 

Within each time window: 

• Make first n data records candidates for the sample by saving 
them into reservoir of size Tn.  

• Process the rest of the record within the time window in the 
following manner: 

• At each iteration generate an independent random 
variable 

�
(n,t). 

• Skip over the next 
�
 data records. 

• Make the next data record a candidate by replacing one 
at random. The index of the record being replaced is 
(n*random()), where random() is random 
number generator that returns a real number in the unit 
interval. 

• If the current number of candidates exceeds n records, 
randomly choose n samples out of the reservoir of 
candidates. 

 An independent random variable 
�
 can be generated in several 

ways. The fastest version of the algorithm generates 
�
 in constant 

time, on the average, by a modification of von Neumann’ s 
rejection-acceptance method and runs in average 
time ( )( )( )nNnO /log1+ , which is optimal, up to a constant factor. 

  

4.2 Heavy Hitters 
 

The heavy hitters problem is to find the elements in a data stream 
which account for at least ε fraction of the all tuples. A fast and 
simple heavy hitters algorithm was proposed by Manku and 
Motwani [3]. Let

ef  be the true frequency of element e in the 

stream. The incoming stream is conceptually divided into buckets 
of width � �ε/1=w  transactions each, where ε  is an error bound. 

Buckets are labeled with bucket id starting from 1. The current 
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bucket id is calculated as � �wNbcurrent /= , where N is current 

length of the stream.  The algorithm also uses a parameter s 
(support): for all collections of transactions, an itemset IX ⊆ , 
where I is universe of all items, is said to have support s if X 
occurs as a subset in at least a fraction s of all transactions. The 
data structure D is a set of entries of the form ( )∆,, fe  where e is 
an element in the stream, f is an integer representing its estimated 
frequency, and ∆  is the maximum possible error in f . Initially D 
is empty. The algorithm works as follows: 

• For every new element e check whether it exists in D. If so, 
increment its frequency f by 1. Otherwise create a new entry 
in D of the form ( )1,1, −currentbe . 

• At the boundary of every bucket iterate over all elements of 
D.  An element ( )∆,, fe  is deleted if

currentbf ≤∆+ . 

• When a user requests a list of items with threshold s, we 
output those entries where ( )Nsf ε−≥  

The algorithm is simple and uses at most ( )Nε
ε

log
1  space. 

Although the output is approximate, the error is guaranteed not to 
exceedε , in the sense that if sf e ≥  the algorithm will return 

element e, and if ε−< sf e
, the algorithm will not return e. 

 

4.3 Min-Hash Computation 
 

The resemblance, ρ, of two sets A and B is the size of their 
intersection divided by the size of their union: 

( ) ||/||, BABABA ��
=ρ  

A min-hash signature [24] is a compressed representation of a set 
from which one can approximate the resemblance of two sets.  Let 
hi(a) be a hash function.  The signature of set A, S(A), is: 

( ) ( )
( ) ( ))(),(

|)(min

1 AsAsAS

AaahAs

n

ii �
=

∈=  

If S(A) and S(B) are two min-hash signatures, then 

∑ =
= n

i ii BsAsIBA
1

))(),((),(ρ�  

Where I(x,y) is the indicator function, returning 1 if x=y and 0 
otherwise.  While any given element si(A) can be easily computed 
in an SQL query, a signature typically contains 100 or more 
elements, making its expression in SQL quite cumbersome.  
However, a substitute for the minimum of N hash functions is the 
N minimum values of a single hash function [24]. 

In [10], the authors use min-hash to sample uniformly from the set 
of distinct elements in the stream and use it to estimate rarity (the 
ratio of the number of items that appear once in the stream to the 
number of distinct items) as well as set similarity between two 
windowed streams.  

 

 

4.4 Subset-Sum Sampling 
 

Estimation of sums of sizes of objects sharing a common set of 
properties is of a particular interest for the network management 
community. In this context the subset-sum sampling algorithm 
provides a better estimate than random sampling.  Like Reservoir 
sampling, the subset-sum sampling can produce fixed size results.  
Unlike reservoir sampling, subset-sum sampling provides 
guarantees on sums of a measure attribute. 

The subset-sum sampling algorithm [2] collects a sample S of 
tuples from R in such a way that we can accurately estimate sums 
from the sample.  We phrase the algorithm in database language 
by assuming that the schema of R is (C,x), where C is an 
attribute we use for subset selection (the “color” of a tuple) and x 
is the measure attribute.  Then  

( )[ ] ( )∑∑ =∧∈==∧∈ cCtRtxtcCtStxtE .|..|.  

Furthermore, the variance of the subset sum over S is within a 
factor z (defined below) of the subset sum over R. 

In the basic subset-sum sampling algorithm, the user sets a 
threshold z, which determines the sample size. Each tuple t is 
sampled with probability ( ) { }zxtxp /.,1min= . In particular, the 
algorithm uses a counter, initialized to zero, and works in the 
following manner: 

• For every new tuple t, check whether t.x > z. If yes, sample 
the tuple. Otherwise, add value of the t.x to the small flow 
counter.  

• If tuple was not sampled, check whether counter > z. If yes, 
subtract z from counter and sample the tuple, setting t.x to z. 
Otherwise discard the tuple. 

The idea behind this algorithm is that tuples with large values of 
t.x contribute the largest amount to a sum. Therefore all large 
tuples are sampled; however small tuples cannot be discarded 
without biasing some subset-sum.  The algorithm samples one 
small tuple every time the combined weight of the small tuples 
exceeds z. To estimate the sum, the measure t.x of the sampled 
small tuple is adjusted to z, since it represents a weight of 
threshold z: }.,.max{. zxtxt =  

The result of the algorithm described above is a sample of 
arbitrary size, which introduces an element of unpredictability.  In 
many cases we would like a sample of a particular size, say 1000 
samples regardless of the distribution of t.x or the size of R. The 
second version of the algorithm (dynamic subset-sum sampling) 
will produce a consistent number of sampled tuples. The user 
specifies the desired sample size N and an initial value of the 
threshold z. In addition to small tuples count (count), the 
algorithm tracks the number of tuples sampled so far 
(sample_count). The algorithm works in the following manner: 

• Collect samples according to the basic subset-sum 
sampling algorithm, keeping a count of the number of 
sampled tuples in sample_count. 

• If sample_count > 	 *N (e.g., 	 =2), estimate a new 
value of z which will result in N tuples.  Subsample S 
using basic subset-sum sampling and the new value of z, 
and continue with basic subset-sum sampling. 
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• When all tuples from R have been processed, if 
sample_count > N then adjust z and subsample S 
using basic subset-sum sampling. 

When applied to a data stream, subset-sum sampling occurs in 
successive time windows.  In this case, an initial threshold can be 
estimated for the new time window using the threshold from the 
old time window, adjusting its value to obtain an estimated N 
samples during the new time window. 

The authors of [2] suggest a variety of strategies for adjusting z. In 
our implementation, we used the aggressive version of the z 
threshold adjustment (z-threshold, |S|-currently maintained 
number of samples, M-desired number of samples, B-number of 
samples for which sample size > threshold): 

If MS <≤ ||0 , then ( )MSzz oldnew /||=  

If MS ≥|| , then ( )( ) ( )( )BMBSzz oldnew −−= /1,||max  

4.5 Summary 
 

We observe that these stream sampling algorithms are quite 
sophisticated, and far from “pick each item with some 
probability” that one expects from uniform sampling. They also 
solve very different problems and each has found many 
applications. Still they follow a common pattern. First a number 
of items are collected from the original data stream according to a 
certain criteria, and perhaps with aggregation in the case of 
duplicates. If a condition on the sample is triggered (e.g., the 
sample is too large), a cleaning phase is triggered and the size of 
the sample is reduced according to another criteria. This sequence 
can be repeated several times until the border of the time window 
is reached and the sample is output. This framework fits each of 
the summarized algorithms as follows: 

• Subset-Sum sampling: Sample records according to the 
basic subset-sum sampling algorithm. Trigger the cleaning 
phase when count_sample > 
 *N. In the cleaning phase, 
adjust z and subsample. 

• Heavy hitters: Count the frequency of occurrence for every 
distinct sample. Trigger the cleaning phase every w input 
tuples. In the cleaning phase, delete samples according to the 
defined rules. 

• Min-hash:  Sample a hash value whenever it is within the 
smallest N of hash values seen thus far.  Trigger the cleaning 
phase when the number of samples exceeds 
 *N.  In the 
cleaning phase, remove the hash values larger than the Nth 
smallest value seen thus far. 

• Reservoir sampling: repeatedly generate � ,, skip that 
number of records, and select the next record for the 
reservoir. Trigger the cleaning phase when the sample size 
exceeds Tn. In the cleaning phase, randomly choose n 
records from the reservoir to keep and delete the rest. 

Our operator in the next section is inspired by the common 
framework above. 

 

 

 

5. THE SAMPLING OPERATOR 
 

From the discussion above, we derive a number of common 
characteristics for the sampling algorithms in question: 

• A “global” state structure. 

• A loose predicate for admitting a tuple to the sample. 

• A predicate which triggers a sample cleaning phase. 

• A predicate for removing samples during the cleaning phase. 

• A finishing-off predicate. 

The process of sampling is in some ways similar to that of 
aggregation, as they both collect and output sets of tuples which 
are representative of the input.  Accordingly, our textual 
representation of the sampling operator is based on the textual 
representation of aggregation: 
SELECT <select expression list> 
FROM <stream> 
WHERE <predicate> 
GROUP BY <group-by variables definition list> 
[SUPERGROUP <group-by variable list>] 
[HAVING <predicate>] 

  CLEANING WHEN <predicate> 
  CLEANING BY <predicate> 

 
The “global” state structure stores the control variables of the 
sampling algorithm. For example, in the Manku-Motwani 
algorithm [3] the state stores variables such as the count of tuples 
processed since the last cleaning phase and the number of 
cleaning phases which have been triggered.  Since we might wish 
to obtain a sample on a group-wise basis (e.g., for each source IP 
address, report the destination IP addresses accounting for at least 
10% of the total packets sent from the source IP), we associate the 
sampling state with supergroups, and samples with the groups in a 
supergroup.  The variables in the SUPERGROUP clause must be 
a subset of group-by variables defined in the GROUP BY clause 
(thus, supergroups are a specialization of grouping sets [12]).  By 
default, the supergroup is ALL.  Along with sampling state 
variables, the supergroup can compute superaggregates 
(aggregates of the supergroup rather than the group). One example 
of a useful superaggregate is count_distinct$(), which 
returns the number of distinct groups in a supergroup (we use the 
$ to denote that an aggregate is associated with the supergroup 
rather than the group). 

More concretely, the semantics of a sampling query is as follows: 

• When a tuple is received, evaluate the WHERE clause.  If the 
WHERE clause evaluates to false, discard the tuple. 

• Else if the condition of the WHERE clause evaluates to 
TRUE then 

• Create and initialize a new supergroup and a new 
superaggregate structure if needed, otherwise update the 
existing superaggregates (if any). 

• Create and initialize a new group and a new aggregate 
structure if needed, otherwise update the existing 
aggregates (if any). 

• Evaluate the CLEANING_WHEN clause. 

• If the CLEANING_WHEN predicate is TRUE 
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• Apply CLEANING_BY clause to every group.  

• If the condition of CLEANING_BY clause 
evaluates to FALSE 

• Remove group from the group table, and 
update any superaggregate 

• When the sampling window is finished,  

• Evaluate the HAVING clause on every group. 

• If the condition in the HAVING clause is satisfied, then 
the group is sampled, else discard the group. 

That completes the description of the operator.  The discussion 
thus far is independent of any specific DSMS.  

 

6. THE OPERATOR IN GIGASCOPE 
 

In this section, we discuss how sampling operator interacts with a 
specific DSMS, namely Gigascope, and is realized in it. 

6.1 Sampling operator in Gigascope 
 

The sampling operator in previous section brings up certain 
details within Gigascope. For example, in the Gigascope DSMS, 
the sampling window ends whenever any ordered group-by 
variable changes value, so the sampling operator will produce 
output once every time window.  As a corollary, all ordered 
group-by variables are part of the supergroup. Also, in some 
algorithms, e.g., dynamic subset-sum sampling, initial values of a 
state in a new time window are derived from the state of the old 
time window.  Our implementation of the sampling operator 
supports this at superaggregate structure initialization time by 
checking if a supergroup with the same non-ordered group-by 
variables existed in the previous time window.  If so, all states in 
the new superaggregate are initialized by a function which accepts 
the equivalent state from the old time window.  

For an example, the following Gigascope query expresses the 
dynamic subset-sum sampling algorithm which collects 100 
samples:   

SELECT uts, srcIP, destIP, 
UMAX(sum(len),ssthreshold()) 

FROM PKTS 
WHERE ssample(len,100) = TRUE 
GROUP BY time/20 as tb, srcIP, destIP, uts 
HAVING ssfinal_clean( sum(len), 

count_distinct$(*) ) = TRUE 
CLEANING WHEN 
     ssdo_clean(count_distinct$(*)) = TRUE 
CLEANING BY ssclean_with(sum(len)) = TRUE 

 

where UMAX(val1, val2) is a function which returns the 
maximum of the two values, and uts is a nanosecond granularity 
timestamp (with its timestamp-ness cast away) used to make each 
tuple its own group. 

The sshthreshold(), ssample(), ssfinal_clean(), 

ssdo_clean() and ssclean_with() functions are stateful 
functions, which we discuss in the next section. 

 

To complete the description of the sample operator, we need to 
discuss some working details, which we do in the context of our 
implementation in Gigascope. 

6.2 Stateful Functions 
 

To implement some of the algorithms, a number of functions need 
to access the same global state throughout the execution. For this 
reason, we call those functions stateful. Typically, a collection of 
functions will share the same state structure. Stateful functions are 
very similar to UDAFs, but with the following differences: 

• They can produce output a number of times during the 
execution. 

• The state can be modified only when the functions which 
share the state are referenced. 

A state is declared as follows: 
STATE <type> <name>; 

The declaration of stateful functions ties the function to the state it 
shares: 

SFUN <type> [modifiers] <state_name> 
<function_name> (<param_list>) 

In case of subset-sum sampling algorithm: 
STATE char[50] subsetsum_sampling_state; 
SFUN int subsetsum_sampling_state ssample(int,     
CONST int); 
SFUN int subsetsum_sampling_state 
 ssfinal_clean(int, int); 
SFUN int subsetsum_sampling_state 
 ssdo_clean(int); 
SFUN int subsetsum_sampling_state 
 ssclean_with(int); 
SFUN int subsetsum_sampling_state 
 ssthreshold(); 

 
When the query references a new supergroup, the space for the 
SFUN state is allocated in the superaggregate structure.  The state 
is initialized with its associated initialization function. For 
example, the prototype of the state initialization function in our 
implementation of the sampling operator is:  

void _sfun_state_init_<state name>(<pointer to 
memory for the state>, <pointer to old state, 
or NULL>); 

Stateful functions are implicitly passed a pointer to their 
associated state.  In our implementation, the prototype of the 
stateful functions has the following form: 

<return type> <name>(void *s, <param_list>); 

where s is the pointer to the state. 

In the case of our subset-sum sampling implementation, some of 
the functions that we added to the Gigascope runtime library are: 

void 
_sfun_state_init_subsetsum_sampling_state( 
void* n, void* o); 
int ssample(void*s, int len, int sample_size); 

6.3 Groups and Supergroups 
 

As discussed earlier, very often there is a need to reference global 
aggregates, or supergroups. For instance, in subset-sum sampling 
the cleaning phase is triggered when the number of groups 
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exceeds the threshold (it’ s important to notice that in the subset-
sum sampling implementation every packet needs to be distinctly 
unique, thus every group consists of a single packet). Another 
example of the query that uses supergroups is the min-hash 
problem, when we would like to compute k min-hash destination 
IP addresses per source IP address; and hence we need a 
superaggregare which returns the kth smallest value.  

There is a difference between regular aggregation and global 
(super) aggregation. To be able to maintain superaggregate, we 
need to maintain group aggregate of the same type. When a new 
group is added or deleted (as a result of the cleaning phase), we 
need to update the supergroup aggregate by adding or subtracting 
the group aggregate value. One of the useful superaggregates is 
count_distinct$() which reports the number of groups in the 
supergroup.  

6.4 Sampling Operator Implementation 
 

Our implementation of the sampling operator maintains three 
types of hash tables: one for the groups, one for the supergroups 
and an additional table that keeps track of all groups for every 
supergroup: 

Group table:  

key – set of group-by variables 

value – structure that maintains group aggregates 

Supergroup table:  

key - set of supergroup variables not including ordered 
variables (when no supergroup is specified, the key is 
associated with a single time window). 

value – structure that maintains state(s) associated with 
the supergroup, and any superaggregates.  

Supergroup-Group table: 

key - set of supergroup variables (when no supergroup 
is specified, the key is associated with a single time 
window). 

value – list of all groups in this supergroup 

Note that the key of the supergroup table is always a subset of 
elements that represent the key of the group table. 

We actually maintain two supergroup hash tables – “ old”  and 
“ new” . The “ old”  supergroup hash table maintains all the 
supergroups that were sampled in the previous window. 

The evaluation process can be summarized as follows: 

• When a tuple is received, compute the key for the supergroup 
table using group-by variables.  

• If at the border of the window, call final_init() function 
for the states in the new supergroup table (to signal to the 
state that the time window is finished) and apply HAVING 
clause to every group of the new group hash-table.  Clear the 
group table, the old supergroup table, and the supergroup-
group table, and move the new supergroup table to the old 
supergroup table. 

• If the supergroup of the newly arrived tuple exists in the new 
supergroup table, then apply WHERE condition to the tuple. 

If the condition evaluates to TRUE, update superaggregates 
of the supergroup, else start processing next tuple. 

• If the supergroup doesn’ t exist in the new supergroup table, 
check whether the supergroup with the same key exists in the 
old supergroup table. If so, initialize the state of the new 
supergroup by using state_init() function, passing a 
pointer to the old state as the second argument. If the 
supergroup is entirely new, pass a NULL as the second 
argument. Create a new supergroup in new hash table.  
Apply WHERE condition to the tuple. If the condition 
evaluates to TRUE, update superaggregates. 

• Compute key for the group table using group-by variables.  

• If the group with this key exists in the new group hash-table, 
update group aggregates. 

• If the group doesn’ t exist, create a new group and new 
aggregates of the group. Add the key of the group to the 
supergroups’  entry in the supergroup-group table. 

• Apply the CLEANING WHEN condition to the supergroup 
state. If the condition evaluates to TRUE, trigger the cleaning 
phase by applying CLEANING BY clause on every group 
that belong to the current supergroup (i.e., using the 
supergroup-group hash-table). If the condition evaluates to 
FALSE, then delete the group from the group hash-table and 
remove its key from the supergroup’ s supergroup-group 
table.  

• Stateful functions that appear in SELECT clause will be 
evaluated last, when the output tuple is created. 

 

6.5 Evaluation Example 
 

Let us consider an example of the subset-sum sampling algorithm. 
The global structure of the algorithm uses a number of parameters, 
such as the value of the threshold z, the counter of small packets 
count, the counter of large packets bcount, value of the cleaning 
threshold � , etc. The evaluation process of the query that 
expresses the algorithm is as follows: 

• When the tuple is received, call ssample() function: 

The loose predicate for admitting a tuple to the sample is the 
basic subset-sum sampling predicate using the current value 
of z. If the function returns false, then the predicate condition 
had failed and we start processing next tuple. If the function 
returns true, process the tuple by creating (or updating) 
appropriate entries for supergroup, group and supergroup-
group hash tables.   

• Call ssdo_clean() function: 

The cleaning phase is triggered when the current sample size 
exceeds the threshold of the number of samples that can be 
maintained by currently processed supergroup. If the 
function returns false, the condition is not met and we start 
processing next tuple. Otherwise, z is adjusted and the 
cleaning phase is triggered. 

• Call ssclean_with() function on every group of currently 
processed supergroup. The current sample is cleaned by 
applying the new value of threshold for the size of the data 
record and deleting those records which don’ t meet the 
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cleaning condition. The cleaning condition states that if the 
size of the data record < value of the threshold before the 
most recent adjustment (z_prev), then z_prev will replace 
size of the record during the cleaning phase. 

• Call ssfinal_clean() at the border of every window. If 
the number of samples still exceeds the desired size of the 
final sample, do the final subsampling. This function 
implements the final cleaning condition which is identical to 
the cleaning condition implemented in ssclean_with() 
function. If the function call returns false, the group is 
evicted from the hash table. Otherwise, the group is sampled 
and the output tuple is created.   

6.6 Query Examples 
 

Although we have focused on the dynamic subset-sum sampling 
implementation, in this section we show how the other three 
algorithms from our representative four can be implemented using 
the generic sampling operator. 

Query for Heavy Hitters Algorithm: This query will report the 
100 most common source addresses within a time window of 1 
minute. The function current_bucket() returns id of current 
bucket. The aggregate first() returns the first value that was 
returned by current_bucket() function within current time 
window. The function local_count(N) increments 
current_bucket and returns true once every N calls.  
 

SELECT tb, srcIP, sum(len), count(*) 
FROM TCP 
GROUP BY time/60 as tb, srcIP 
CLEANING WHEN local_count(100) = TRUE 
CLEANING BY count(*) < current_bucket()- 

 first(current_bucket()) 

 

Query for Min-Hash Computation: This query will report 100 
min-hash values of destination IP addresses per source IP address.  
This query does not make use of stateful functions but instead 
relies on the count_distinct$(*) and the 
Kth_smallest_value$(HX,100) superaggregates (Kth-

smallest_value(x,n) returns the nth smallest value of x). 
 

SELECT tb, srcIP, HX 
FROM TCP 
WHERE HX <= Kth_smallest_value$(HX, 100) 
GROUP_BY time/60 as tb, srcIP, H(destIP) as HX  
SUPERGROUP BY tb, srcIP 
HAVING HX <= Kth_smallest_value$(HX, 100) 
CLEANING WHEN count_distinct$(*) >= 100 
CLEANING BY HX <= Kth_smallest_value$(HX, 100) 

 

Query for Reservoir Sampling Algorithm: This query will 
return 100 random samples per time window of 1 minute. The 
function rsample(100) implements the sampling condition by 
returning true for those tuples that should be saved in the reservoir 
of candidate tuples, and returning false for those that are skipped 
over. The function rsdo_clean() returns true when the number 
of candidates (count_distinct$()) exceeds the threshold value 
of Tn, and returns false otherwise. The functions 
rsclean_with() and rsfinal_clean() randomly subsample 
n final samples the reservoir of candidates: 
 

SELECT tb, srcIP, destIP 
FROM TCP 
WHERE rsample(100) = TRUE 
GROUP_BY time/60 as tb, srcIP, destIP 
HAVING rsfinal_clean() = TRUE 
CLEANING WHEN 

rsdo_clean(count_distinct$()) =  TRUE 
CLEANING BY rsclean_with() = TRUE 

 

7. EXPERIMENTS 
 

We implemented the sampling operator in the Gigascope DSMS 
in order to experiment with the feasibility and performance of the 
operator.  The Gigascope implementers also provided us with 
access to several network data streams. We implemented not only 
the operator, but also amended the parser and query analyzer to 
instantiate the sampling operator from a query with the textual 
representation described in Section 5.  

In our experiments, we focus on the dynamic subset-sum 
sampling algorithm.  The dynamic subset-sum sampling algorithm 
is used extensively in the AT&T network performance monitoring 
infrastructure [2], and consequently this algorithm is well 
understood by the Gigascope developers.  In addition, the 
Gigascope developers indicted that dynamic subset-sum sampling 
is a good first algorithm because of the demand for its use.  Our 
implementation of dynamic subset-sum sampling follows the 
description given in Section 5. 

We had two network feeds available for experiments.  The first is 
the network connection to our research center.  This data stream 
produces a moderate 5,000 to 15,000 packets per second, with a 
rate that is highly variable.  The second network feed is a data 
center tap, producing moderately high speed 100,000 packets per 
second (about 400 Mbits/sec).  This data feed is highly 
aggregated, and hence has a much lower variability in its data rate 
than the first.  When testing accuracy, we generally use the first 
data feed because its high variability will tend to emphasize 
estimation problems.  When testing performance, we generally use 
the second data feed because its low variability and high data rate 
make measurements much more consistent.  For all experiments, 
we used an inexpensive dual 2.8 GHz processor server. 

7.1 Accuracy 
 

We measured the accuracy of the dynamic subset-sum sampling 
algorithm by running two query sets simultaneously.  One 
computed the sum of packet lengths during successive 20 second 
intervals, and the other applied dynamic subset-sum sampling to 
collect 1000 samples of packets, then computed the sum of 
(subset-sum sample adjusted) packet lengths for each time 
interval.  We found that on many of the time intervals, the 
dynamic subset-sum sampling algorithm is inaccurate. This 
property is illustrated in Figure 2, where the aggregate result is 
labeled “ actual”  and the dynamic subset-sum sampling result is 
labeled “ estimated (non-relaxed)” .   

The problem lies in the threshold update procedure discussed in 
4.4.  The load during the next interval is estimated to be the load 
during this interval; if the load drops sharply, dynamic subset-sum 
sampling collects too few samples and underestimates the sum. 
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Figure 2.  1000 samples per period. 

To correct this problem, we made a minor adjustment to the 
dynamic subset-sum sampling so that it will estimate that the load 
in the next time period is a fraction 1/f of the load during this 
interval.  We call this the relaxed version. In Figure 2 we use 
f=10 and the relaxed estimates match the actual sum very closely 
for all time periods. The relaxed algorithm works well because the 
cleaning phases readily adapt the threshold upward to the 
appropriate value. 

Another illustration of the problem with non-relaxed subset-sum 
sampling is shown in Figure 3.  The relaxed algorithm 
occasionally over-samples, while the non-relaxed algorithm 
frequently under-samples causing an underestimation. 
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Figure 3.  1000 samples per period.  

The cost of the relaxed algorithm is that the cleaning phase is 
invoked more frequently.  Figure 4 shows the number of cleaning 
phases for the relaxed and non-relaxed dynamic subset-sum 
sampling algorithms during the experiment.  The first interval was 
very short (as can also be seen from the other charts).  In the 
second interval, both algorithms used a large number of cleaning 
phases to identify the appropriate threshold; afterwards the 
number of cleaning phases stabilized at a low level.  The relaxed 
algorithm consistently used about 4 cleaning phases, as compared 
to 1 for the non-relaxed algorithm.  If the cost of the cleaning 
phase is small (which we explore in the next section), using the 
relaxed algorithm incurs only a small overhead. 

We repeated these experiments to collect 100 and 10,000 samples 
per period, and obtained nearly identical results (a user will 

collect a larger or smaller number of samples depending on 
storage costs and the degree of subsetting during analysis). 
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Figure 4.  1000 samples per period. 

7.2 Performance 
 

To evaluate the CPU overhead of running adaptive subset-sum 
sampling using our sampling operator, we ran both the relaxed 
and the non-relaxed dynamic subset-sum sampling algorithms on 
the high speed link (100,000 packets/sec), as the CPU utilization 
of these queries on the moderate speed link is too low to measure 
accurately.  For a comparison, we also ran basic subset-sum 
sampling using a user-defined function in a selection operator.  A 
comparison of the CPU usage for each of these algorithms is 
shown in Figure 5.  Even when processing 100,000+ packets/sec 
and producing large outputs, the dynamic subset-sum sampling 
algorithm implemented using the sampling operator uses only a 
small fraction of a CPU (two CPUs are available at the server).  
Compared to the selection query (basic subset-sum sampling), the 
sampling operator uses only about 3% to 5% additional CPU 
load.  The cost of the additional cleaning phases to support 
relaxed subset-sum sampling can be seen in this chart.  However 
the overhead is small, at most about 2% of CPU for this 
experiment. 
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Figure 5.  CPU usage for sampling. 
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However, there is a problem with this implementation of dynamic 
subset-sum sampling.  Recall that there are two types of queries 
nodes in the Gigascope architecture: low level queries which read 
from the network interface, and high level queries which read 
from Gigascope-managed query streams.  The low-level queries 
nodes are simple data reduction operators.  Currently only 
selection and (partial) aggregation are supported.  Therefore we 
need to run a low-level selection query to feed the subset-sum 
sampling queries.  In the run of experiments shown in Figure 5, 
evaluating the low-level query required about 60% of a CPU, due 
to the cost of memory copies. 

Fortunately, it is possible to evaluate part of a subset-sum 
sampling query at the low-level query.  We modified the low-level 
selection query to have it perform basic subset-sum sampling with 
a threshold 1/10th the level used by the dynamic subset-sum 
sampling algorithm when it returns 10,000 samples per interval.  
The low-level query load dropped to about 4% of a CPU.  In 
addition, the dynamic subset-sum sampling CPU load dropped 
significantly, as shown in Figure 6. 
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Figure 6.  Effect of low-level query type. 

 

We ran additional experiments regarding the setting of 
  (the 
trigger to initiate a cleaning phase).  Increasing (decreasing) 
  
decreases (increases) the number of times cleaning is done, but 
increases (decreases) its cost.  We found little dependence of CPU 
load on 
 . 

8. CONCLUSION 
 

Query sets which make use of very high speed data streams must 
often use approximate data reduction strategies to provide 
complex statistics while keeping up with the offered data load.  A 
useful approximation technique is sampling, which reduces the 
data set into a much smaller and yet representative result. Typical 
sampling methods are often quite simple: sample each item with 
some probability, say p. But in streaming context, even uniform 
sampling from distinct elements on the stream is a challenge. Over 

the past few years, researchers have proposed very sophisticated 
sampling algorithms on streams for a variety of problems. Rather 
than propose new stream sampling methods, we have focused on 
how to implement the many intricate sampling methods in the 
literature. Our approach has been to abstract and propose a new 
stream operator for evaluating sophisticated sampling algorithms, 
on a data stream.  This operator is powerful enough to evaluate 
many widely different stream sampling algorithms including 
subset-sum sampling (from networking), reservoir sampling (from 
databases), min-hash sampling (from theoretical algorithms), etc., 
as well as sampling-based aggregation algorithms such as the 
Manku-Motwani heavy hitters’  algorithm, and many more. We 
urge the readers to try modeling other stream sampling algorithms 
via our stream operator to appreciate its flexibility and generality. 
Some of our ongoing work consists of cascading one type of 
stream sampling inside a different type of stream sampling group; 
we will report on those results in the journal version of this paper.  

We implemented the sampling operator in the Gigascope DSMS, 
and implemented dynamic subset-sum sampling on top of that.  
We made a performance evaluation of dynamic subset-sum 
sampling on both highly variable and high speed data streams.  
We found that 

• The accuracy of the dynamic subset-sum sampling 
algorithm can be greatly improved by relaxing the 
threshold between time windows. This was re-
engineering that was a result of experience with the real 
system. 

• The sampling operator imposes only a small CPU 
overhead, as compared to a simple selection operator.  
We can readily scale subset-sum sampling to much 
higher data rates. 

• By performing part of the subset-sum sampling at the 
low level query, we can collect a 1% subset-sum sample 
on a high speed data stream using less than 6% of a 
CPU. 

Obtaining the best performance from a DSMS such as Gigascope 
requires a significant amount of early data reduction at the low-
level queries. The method for doing this will depend on the 
approximation algorithm. For example, the Manku-Motwani 
heavy hitters algorithm would be best supported by aggregation at 
the low-level queries. We have not explored operator transforms 
in this paper, but we have gained valuable query optimization tips 
during our experimental study.  

The significance of our results is that we have developed a simple 
way in which sophisticated streaming algorithms that returns set 
results can be integrated into a query system.  The supporting 
UDAFs and functions need only follow a simple API.  Once 
written, the user has the power of the query language to explore 
new combinations.  This ease of experimentation allowed us to 
find the simple upgrade of subset-sum sampling which so 
improved its accuracy.  The relaxed version of subset-sum 
sampling, along with the sampling operator, has been 
incorporated into the release version of Gigascope. This 
implementation is the first one that we know of in an operational 
DSMS which can handle line speeds. 

Our success stems from our observation that a large class of 
sampling algorithms have an essentially simple communication 
structure, namely between individual samples and a sample 
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summary only.  We have focused on this core aspect of sampling 
algorithms. We note that it is quite possible to derive sampling-
based algorithms which operate on the samples in more complex 
ways and therefore require a far more complex communication 
structure. An excellent example is a more-holistic sampling 
algorithm such as the Greenwald-Khanna quantile algorithm [18].  
The compress phase of this algorithm merges adjacent samples, 
and thus requires inter-sample communication.  This algorithm 
(expressed as a UDAF in [14]) and others which may have such 
computations on samples built into them, are best expressed using 
a stream UDAF on top of the sampling operator we have 
developed here. In contrast, all sampling algorithms that work on 
a per-sample tuple basis can be implemented using our sampling 
operator. 

In addition to capturing capturing a common thread of evaluation 
of a large variety of sampling algorithms, our sampling operator is 
able to maintain information about groups and supergroups in 
terms of aggregates and superaggregates required for 
implementation and statistical analysis of a sampling algorithm. 
We believe that this, along with stateful functions, gives the user 
the level of flexibility required for implementation and 
customization of various sampling-related algorithms.  Our work 
with subset-sum sampling demonstrated this, but we provide 
another example. 

The following example demonstrates the flexibility of the 
sampling operator. In network traffic analysis it is often useful to 
perform network measurements using flow statistics rather than 
packet statistics, since flows offer a considerable compression of 
information over packet headers. The straightforward 
implementation of this approach in terms of the stream sampling 
operator can be expressed as a set of queries, where flow 
aggregation is performed leveling a first query, and the result is 
fed to a higher level sampling query. However, this 
implementation exhibited difficulties under certain network 
conditions, in particular when there is a large number of small 
flows consisting of only a few packets (e.g. during DDOS 
attacks). Under these conditions, the flow aggregation query 
requires an enormous number of groups (corresponding to the 
enormous number of flows), exhausts the available memory, and 
fails. To overcome this problem we modified the implementation 
of the subset-sum sampling algorithm by integrating flow 
aggregation with sampling into a single query processing phase. 
This implementation of the algorithm allows us to create very 
informative flow samples on streams of network data with a 
moderate memory overhead.  The key trick is that small flows can 
be quickly sampled and purged from the group table. The new 
sampled flows query is a more stable implementation which is 
resistant to rapid network changes. We will report on the details 
and our experience elsewhere. 
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