
Online Event-driven Subsequence Matching
over Financial Data Streams

Huanmei Wu
�

Betty Salzberg
�

Donghui Zhang
College of Computer and Information Science

Northeastern University
Boston, MA 02215� maggiewu, salzberg, donghui � @ccs.neu.edu

ABSTRACT
Subsequence similarity matching in time series databases is an im-
portant research area for many applications. This paper presents a
new approximate approach for automatic online subsequence simi-
larity matching over massive data streams. With a simultaneous on-
line segmentation and pruning algorithm over the incoming stream,
the resulting piecewise linear representation of the data stream fea-
tures high sensitivity and accuracy. The similarity definition is
based on a permutation followed by a metric distance function,
which provides the similarity search with flexibility, sensitivity and
scalability. Also, the metric-based indexing methods can be applied
for speed-up. To reduce the system burden, the event-driven simi-
larity search is performed only when there is a potential event. The
query sequence is the most recent subsequence of piecewise data
representation of the incoming stream which is automatically gen-
erated by the system. The retrieved results can be analyzed in dif-
ferent ways according to the requirements of specific applications.
This paper discusses an application for future data movement pre-
diction based on statistical information. Experiments on real stock
data are performed. The correctness of trend predictions is used to
evaluate the performance of subsequence similarity matching.

1. INTRODUCTION
Many applications generate data streams and there is an increas-

ing need to maintain statistical information online. Stream databases
are distinguished from conventional databases in several aspects.
Raw data is too large to be stored in a traditional database for
efficient data management. Querying on the stream database is
difficult in set-oriented data management systems. Because the
data is changing constantly, a single-pass search over the stream is
mandatory since it is infeasible or impossible to rewind the stream.
�
This work is part of CenSSIS, the Center for Subsurface Sens-

ing and Imaging Systems, under the Engineering Research Cen-
ters Program of the National Science Foundation (Award # EEC-
9986821).�
This work is partially supported by NSF grant IIS-0073063.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . . $5.00.

The answers of the query usually are approximate and partial an-
swers. Examples of stream databases can be found in stock market
quotes, sensor data, telecommunication systems, and network man-
agement.

Subsequence matching in time series databases tries to find sub-
sequences from the large data sequences in the database that are
similar to a given query sequence. It is important in data mining
and is used for pattern matching, future movement prediction, new
pattern identification, rule discovery and computer aided diagno-
sis. Stream data are naturally ordered in time. Some streams are
ordered in a fixed time interval and can be treated as stream time
series directly. Some streams come in irregularly and special pro-
cedures are needed in order to apply time series techniques. For
example, there are thousands of stock transactions every second,
which may be carried out at any time and there are different num-
bers of transactions at different times.

Existing techniques on time series subsequence matching mainly
focus on discovering the similarity between an online querying sub-
sequence and a traditional database. The queried data are static and
are accessed using an index. Research in time series data streams is
in its preliminary stage. Only some basic statistical measures such
as moving averages and standard derivation have been addressed.
There is recent research [17, 18, 29, 38] on similarity matching over
data streams. The papers [38] treat pair-wise correlated statistics in
an online fashion, focusing on similarity for whole data streams,
not on subsequence similarity. The papers [17, 18] treat similarity-
based continuous pattern queries with prediction, which can be
extended to answer nearest � neighbors on a stream time series.
Last, [29] uses an index structure for K-NN search on data streams.
In contrast, we are investigating application-guided subsequence
matching over online financial data streams and online query sub-
sequences. Our database is a dynamic stream database which stores
recent financial data. It will be automatically updated as new stream
data comes in. So our database includes the most recent historical
data. The query subsequence is automatically generated based on
the current state of the data stream. And our new similarity measure
satisfies the special requirements of financial data analysis.

Subsequence similarity of financial data streams has its unique
properties. First, according to Elliott Wave Theory [15], the move-
ment of the stock market can be predicted by observing and iden-
tifying a repetitive pattern of waves. Based on this wave theory,
the online piecewise linear representation of the stream data should
be in an up-down-up-down repetitive pattern (the zigzag shape).
Keogh et al. [26] summarized four well-known algorithms for time
series segmentation. None of them has addressed the zigzag re-
quirement. The result of the compression algorithm in [14] is in���	�
����� shape, but the algorithm does not satisfy the real time re-

Figure 1: Subsequence similarity with different relative posi-
tions: (a) Two subsequences differ in the relative positions of
the lower points; (b) Two subsequences differ in the relative
positions of the upper points.

Figure 2: Subsequence similarity with time scaling and ampli-
tude rescaling.

quirements for online stock data analysis because it has a longer
delay to identify an extreme point when the extrema ratio is large.
It is necessary to have a new online segmentation algorithm that can
quickly and accurately identify potentially important points. Sec-
ond, the relative position of the upper and lower end points plays
an important role in subsequence similarity. Figure 1 shows two
examples of two pairs of subsequences which would be considered
similar using existing subsequence similarity measures. But tech-
nical analysis of financial data is also concerned with the relative
position of the upper end points as well as the relative position of
the lower end points. The two pairs of subsequences in Figure 1
would not be considered similar by financial data analysts. Third,
subsequence similarity should be flexible with regard to time shift-
ing and scaling, price shifting and amplitude rescaling (
������ ���������
is the value difference of two adjacent end points). Financial data
technical analysis assumes that the amplitude difference is more
important than the time difference. For example, in Figure 2, all
four subsequences are derived from a sequence with time scaling,
or amplitude rescaling, or both. The pairs S � and S � , S � and S �
have the same amplitude changes, but different time changes, and
the pairs S � and S � , S � and S � have the same time changes but dif-
ferent amplitude changes. According to financial analysts, S � and

S � , S � and S � are more similar while S � and S � , S � and S � are
less similar. A new subsequence similarity definition that allows
amplitude rescaling (but with limitations) is required.

Our new online event-driven subsequence similarity matching
takes into account and gracefully handles the special properties of
financial data analysis. We make the following main contributions:

1. We propose a 3-tier online simultaneous segmentation and
pruning algorithm. It takes a raw financial data stream as
input and produces a stream of piecewise linear representa-
tion end points. The end points are in an upper-lower-upper-
lower repetitive pattern (the zigzag shape). This tiered seg-
mentation and pruning algorithm provides the piecewise lin-
ear representation with high sensitivity and accuracy. The
algorithm runs in linear time and with constant memory.

2. We explore an alternative similarity measure for subsequence
matching, where a metric distance function is defined based
on a permutation of the subsequence. The permutation en-
sures two subsequences have the same relative positions. The
distance function controls the extent of amplitude rescaling.
The new definition provides subsequence similarity search
with sensitivity, flexibility and scalability. Any existing metric-
based indexing technology can be employed for search speed-
up.

3. We perform event-driven subsequence similarity matching
over an up-to-date database using the end points of the piece-
wise linear representation. The query will be carried out only
when there is a new end point. The automatically generated
query subsequence is the most recent subsequence of the end
points, which reflects the most recent information of the raw
financial data stream. A new mechanism that can turn on or
off the search engine is enabled.

4. We apply a new definition of trend for financial data streams
using the results of subsequence similarity search to predict
future data movement. Our definition of trend does not place
any restrictions on the characteristics of the stock streams on
which it is applied. The market can be a bull market, a bear
market or a no-trend market. Our event-driven subsequence
similarity search is more accurate in seizing critical points
for a trend period than algorithms which search at all time
instances. In addition, our approach is 30 times faster than
searching at all time instances.

The rest of the paper is organized as follows. Section 2 briefly
discusses related work on subsequence matching and data stream
processing. Section 3 describes our strategy for data processing
over incoming streams. The subsequence similarity matching of
the resulting piecewise linear representation is explained in detail
in Section 4. One application of our similarity search for trend pre-
diction is discussed in Section 5. Section 6 presents our experiment
results and Section 7 concludes this paper and provides some future
research directions.

2. RELATED WORK
Similarity search in time series is useful for many data mining

applications. Agrawal et al. [2] has first introduced whole sequence
similarity matching. Faloutsos et al. [13] generalized it to subse-
quence similarity matching. The basic idea is to transform the se-
quence into the frequency domain using a Discrete Fourier Trans-
formation (DFT). Then the first few features are extracted and the

Euclidean distance is used as the similarity distance function. Mul-
tidimensional indexing methods such as the R*-tree [5] can be ap-
plied for fast search. In subsequence matching, the R*-tree stores
only Minimum Bounding Rectangles (MBR). New research based
on subsequence search has grown in several aspects. New meth-
ods in constructing MBRs reduce false negatives [30]. Keogh et
al. proposed Piecewise Aggregate Approximation (PAA) to reduce
the dimensionality and to support fast sequence matching using
R-trees. Other feature extraction functions, such as the Discrete
Wavelet Transformation (DWT) [8, 20], Adaptive Piecewise Con-
stant Approximation (APAC) [24], and Single Value Decomposi-
tion (SVD) [28] have been proposed to reduce the dimensionality
of time series data. New distance functions such as Dynamic Time
Warping [32, 35] and Longest Common Subsequences [11] have
been explored to overcome the brittleness of the Euclidean distance
measure or its variations [2, 13, 33].

Data streams have attracted more research interest recently [1, 3,
4, 12, 17, 18, 19, 21, 22, 29, 31, 38]. Babu et al. [3] showed how to
define and evaluate continuous queries over data streams. Some ba-
sic statistics over data streams have been studied. Datar et al. [12]
studied single stream statistics using sliding windows. Gehrke et
al. [19] studied statistics for correlated aggregates over multiple
data streams using histograms. Gao et al. [17, 18] introduce a new
strategy of continuous queries with prediction on a stream time se-
ries. Liu et al. [29] treat KNN search over data streams using index
structures. Zhu et al. [38] proposed a new method for statistics over
thousands of data streams. Their research focuses on pair-wise cor-
relation using a grid-based data structure. Data stream clustering
algorithms include STREAM [22, 31], Fractal Clustering [4], and
CluStream [1]. STREAM aims to provide guaranteed performance
of data stream clustering and CluStream is developed for clustering
large evolving data streams.

Stock data analysis has attracted researchers for years. Autore-
gressive and moving average are long used techniques [23] for
stock market prediction. In the field of data mining, intensive re-
search has been done on the application of neural networks to stock
market prediction [27]. Stock trends can be also predicted based on
the association of trends with news articles [16]. Fink and Pratt ap-
plied subsequence similarity matching in compressed time series
by identifying major extrema [14]. The previous work does not
concern the real time requirements of online financial data analy-
sis. For instance, the � -test based piecewise segmentation in [16]
works on static historical time series in the training phase. The
compression algorithm in [14] runs in an online fashion. But it will
take longer delay time to identify the previous extremum, which is
not practical for stock trading where early detection of a potential
end point is critical.

Our work differs from previous research in several aspects. The
problem addressed here is online subsequence search over finan-
cial data steams and we have addressed the special requirements of
financial data technical analysis. Our distance measure for subse-
quence similarity is a metric distance function based on a permuta-
tion. The subsequence matching process is triggered by new online
events. Our database maintains up-to-date information with newly
arrived data, not previously obtained data.

3. ONLINE DATA STREAM PROCESSING
Translating massive data streams into manageable data for the

database, which can be queried and indexed upon is an important
step for data stream subsequence similarity matching. This sec-
tion discusses the data preprocessing steps before similarity search
which result in piecewise linear representation of incoming streams.
The process of data stream aggregation, segmentation and pruning

is explained in more detail below.

3.1 Aggregation and Smoothing
Piecewise linear representation of the data streams requires the

data streams to have one fixed value for each time interval. The
incoming data streams may arrive at any time. Aggregation over
raw data streams is both necessary and important for practical ap-
plications. A stream may acquire different aggregate values for dif-
ferent purposes. For example, in stock market analysis, the open,
high (MAX), low (MIN), close, and volume (SUM) values of one
quote over a time interval (minutes, hours, days, months or years)
are very important information.

Aggregation makes sure there is a unique value for each time
instance over a fixed time interval. If we draw the data movement
with time, we can see a lot of shorter-time random oscillation over a
longer-term trend. We need to filter out the noise before further data
processing. We use the standard moving average which is widely
used in the financial market [6] to smooth the data:

"!$# �&%('*)�
+,

-/.0+	1 !324�65 #87
%

where X(i) is the value for i = 1, 2, ..., n and n is the number of
periods.

"!$# �&% calculates the p-interval moving average time
series which assigns equal weight to every point in the averaging
interval. By smoothing through the moving average, shorter-term
noise will be filtered out while a clean trend signal is generated.

3.2 Piecewise linear representation
Piecewise Linear Representation uses line segments to approxi-

mate a time series [14, 26]. Our approach is new because we adopt
a tiered online segmentation and pruning strategy. We do not seg-
ment over the price stream directly, instead we segment over one
financial indicator, Bollinger Band Percent (%b) [6], to be the first
base input for line segmentation. Then we prune over the end points
of the %b line segments based on some criteria of %b. The final line
segments over the raw data stream are obtained by pruning on the
previous line segments with criteria based on the raw price stream.
We will explain in detail why we choose %b to do the segmentation
and how the tiered structure provides high sensitivity and accuracy
in the online segmentation.

3.2.1 %b indicator
Bollinger Bands [6] are widely used financial indicators which

provide relative definitions of high and low values for time series.
The bands are curves drawn above and below a moving average by
a measure of standard derivation. An example of time series and
Bollinger bands is shown in Figure 3b. The three curves are de-
fined as follows:

middle band = p-period moving average
upper band = middle band + 2 9 p-period standard deviation
lower band = middle band - 2 9 p-period standard deviation

%b, shown in Figure 3c, is another popular indicator derived from
Bollinger Bands. %b tells us the current state within the bands. The
formula for %b is the following:

:<; '>= �@?�A � ��B � = ��C �@?ED � B ; ��FG�� �6� � B ; ��FG�HC �@?ID � B ; ��FG�
%b is chosen to be the first base for linear segmentation because of
the following. First, %b has a smoothed moving trend similar to the
price movement. If the price moves in an up trend, %b is also in an
up trend. And if the price is in a down trend, %b is also in a down

Figure 3: Piecewise linear representation (PLR). (a) Raw financial price stream data; (b) Raw stream data with Bollinger Bands; (c) The
corresponding stream of %b values; (d) PLR of %b without pruning; (e) PLR of %b with pruning only on %b during segmentation; (f) PLR of
raw stream data with pruning on %b and raw data during segmentation.

trend. The upper and lower end points of %b correspond to the
upper and lower end points of the raw price data. Second, %b is a
normalized value of the real price. Most %b values are between -1
and 2 no matter what real price values are. So we can set a uniform
segmentation threshold for %b which we could not do over the real
price. For example, if the average price of a stock is $1.00, a change
of $0.20 may be considered as a big movement. But to a stock
with an average price about $100.00, $0.20 difference can only be
considered as noise. Third, %b is very sensitive to the price change.
It will manifest the price change accurately without any delay. So
segmentation over %b is more suitable than segmentation directly
over the raw price data stream.

3.2.2 Segmentation
Segmentation is based on the %b values. For each time instance,

there is a corresponding %b value. Segmentation over %b finds
optimized upper and lower end points of the piecewise linear rep-
resentation for %b. Figure 3d shows the segmentation results of
Figure 3c. Our segmentation algorithm is different from others
not only because of a different definition of upper and lower end
points but also the resulting end points of our segmentation are in
the zigzag shape which is not the case in other algorithms.

Our segmentation algorithm uses a sliding window with varying
size. The sliding window can only contain at most m points, begin-
ning after the last identified end point and ending right before the
current point, as shown in Figure 4. If there are more than m points
between the last end point and the current point, only the last m
points are contained in the sliding window. The segmentation tries
to find a possible upper or lower point only in the current sliding
window. An upper point is defined as follows (the definition of a
lower point is symmetric and thus is omitted here):

Suppose the current point is P- # 5 -6J
� - % . The upper point K + (5 + ,� +) is a point in the current sliding window that satisfies:

1. 5 + = max(X values of current sliding window);

2. 5 +(L 5 -NMPO (where O is the given error threshold) ;

3. K + # 5 +QJ
� + % is the last one satisfying the above two conditions.

Figure 4 shows an example of an upper point. Here, K - ' KR�S�
is the current point. The previous identified end point is K � , so the

Figure 4: A sliding window which finds an upper point. Sup-
pose that m = 10, T = 1.0, UGV is the last identified end point, UXWSV is the
current point. The actual sliding window size m is 8. U WSY is a new upper
point.

sliding window currently contains m = 9 points starting from Z\[.
Both Z4] and Z WSY have the maximum value, but only Z WSY is found
as a upper point because it is the last one with the maximal value
in the sliding window. Another thing needed to be mentioned here
is the delay time, which is the time difference between the actually
time of an end point and the time when it is identifies as an end
point. Although the upper point is at ^ WSY , it is only identified at^ WSV . The delay time for identifying ^ WSY is ^ WSV"_ ^ WSY . The threshold`

plays an important role in the delay and the number of line seg-
ments. A smaller

`
will reduce the delay time but result in a larger

number of short line segments, some of which may still be noise. A
larger

`
will decrease the number of line segments but with longer

delay. If
`

is too large, some useful information will be filtered out.
There is a tradeoff between the delay time and more accurate piece-
wise linear representation. We propose an optimized algorithm for
simultaneous online segmentation and pruning. The new algorithm
will reduce the delay time yet will give more accurate piecewise
linear representation.

3.2.3 Pruning
Before going into detail for our online segmentation and pruning

algorithm, we first introduce the rationale and approach for prun-
ing. To the best of our knowledge, no other published algorithm
does pruning. Pruning is the process to remove noise-like line seg-

ments along with the segmentation process. Segmentation tries to
find potential end points using a smaller threshold Oba , so new end
points can be identified with shorter delay time. Pruning is smooth-
ing over recently identified end points. Noise introduced by smallO a will be filtered out by the pruning process and more accurate
line segments are generated. This segmentation and pruning mech-
anism helps to quickly identify a new end point yet with accurate
piecewise linear representation. The shorter delay time is very im-
portant for real time applications such as stock data analysis. The
end points are generally critical points for stock transactions. The
earlier such points are identified, the better the chances are for prof-
itable stock trading.

The pruning process itself is a two-step process. First, %b is
used in the filter step. But when mapping %b pruned end points
onto raw data, the piecewise linear representation on raw data may
still have some noise. It is possible that the %b data values change
considerably while the raw data values change very little. So we
need a refinement step. Pruning on the raw data stream not only
removes the oscillations of a trend, but also enforces the zigzag
shape. Under rare conditions, the end points mapped directly from
%b end points may not be in the zigzag shape. Figure 3e and 3f
shows the pruning results on both %b and on the raw stream data.
The thick dotted line segments are new line segments generated
by the pruning process. The corresponding filled line segments
covered by dotted lines are removed.

The actual technique for pruning is following. If the absolute %b
or raw data values of two adjacent end points (called the amplitude)
differs by less than a certain value, that line segment should be
removed. Note there may be different values for pruning on %b
from those used in pruning the raw data stream. The tricky part
is we must keep the zigzag shape of the end points, so we must
remove two adjacent end points at the same time. This creates a
problem as shown in Figure 5. Here, the line segment

Cc = � is under
the pruning threshold, so pruning is needed. There are several ways
to remove

Cc = � .
In online segmentation and pruning, at each new end point, we

check the previous line segment for pruning. For example, in Fig-
ure 5, at the time when end point e is identified, line segment

Cc= �
is tested for pruning. First we check the need for pruning on %b.
If needed, pruning is carried out. Then the system waits for next
stream data to come in and no pruning on raw data is done. If no
pruning on %b is needed, the same line segment is checked for
pruning on raw data. So there is at most one pruning at each end
point. The pruning algorithm is the same for pruning on both %b
and raw data.

We compare the last end point with the third last end point to see
which one gives a better piecewise linear representation. If the two
points are upper points, the one with the larger value will be kept.
Otherwise, if both lower points, the one with the smaller value will
be kept. Figure 5 gives an example for pruning with the last end
point as a lower point. End points e and c are compared. If e has
smaller value, end points c and d will be removed from the end
points stream, and a new line segment

Cc ; � is generated (Figure 5b).
If c has smaller value, end points d and e will be removed. Line
segment

Cc ; = will remain (Figure 5b).

3.3 Online segmentation and pruning
Our online subsequence similarity matching is based on the sim-

ilarity between two subsequences of end points. A single-pass for
online segmentation and pruning is mandatory. To reduce the time
delay in identifying end points and improve piecewise linear repre-
sentation, we use different thresholds for segmentation and prun-

Figure 5: Two possible ways for pruning line segment = � .

ing: a smaller threshold O a for segmentation over %b, a larger
threshold OEd! for pruning over %b, and a separate O�e! for pruning
over raw stream data. A smaller threshold for segmentation will
ensure the sensitivity and reduce delay. A larger pruning thresh-
old will filter out noise. Our experiments show that O agfih
j h6k ,OEd! f) j l are suitable for most stock prices. The value of O�e! is
flexible and varies according to different users. Experiments have
shown that10% to 20% of the price change over the trading pe-
riod has reasonable results. For instance, for intra-day trading, if
a quote’s average daily price change is $1.50, O e! between $0.15 to
$0.30 all can achieve pretty good results.

The online segmentation and pruning are running simultaneously.
Whenever an upper/lower point is identified by the segmentation
process, the previous line segment is checked for pruning as men-
tioned in Section 3.2.3. To better explain the online segmentation
and pruning algorithm, an animation of the process is illustrated in
Figure 6. Suppose now we are after the time when �nm is identified
as an upper point (Figure 6a). As time goes on, P(� �) is identified
to be a potential lower point (Figure 6b). A temporary line seg-
ment

C@C c� m � � is generated. The line segment immediately before � m is
checked for pruning. Since the amplitude of the line segment on
%b is larger than O�d! , and that of raw stream is larger than OEe! , nei-
ther pruning on %b nor on raw stream is needed. Similarly, end
points P(� �) and P(� �) are identified as potential end points without
pruning (Figure 6c).

A pruning is encountered when P(� �) is identified as a potential
upper point (Figure 6d). The line segment

CoC c� � � � is checked for prun-
ing. Since the amplitude of

CpC c� � � � is less than OEd! , a pruning process
is required. The last end point P(� �) and the third last end point
P(� �) are compared for a better Piecewise Linear Representation
on %b. Since both points are upper points, the one with the larger
value will be kept. Here, the value at t � is larger, end points P(� �)
and P(� �) are removed, and line segments

CpC c� � � � CpC c� � � � CoC c� � � � on both
%b and the raw stream are removed. A new line segment

CoC c� � � � is
created.

Continuing the segmentation and pruning process to time �rq , a
new potential lower end point is identified without pruning. An-
other pruning process is encountered at time �Qs when a new po-
tential upper point is identified (Figure 6e). The amplitude for the
previous line segment

CoC c� � �Qq on %b is larger than O�d! , so no pruning
on %b is required. But the amplitude of

C@C c� � �nq is less than thresh-
old O e! , pruning on raw data stream is required. By comparing the
raw price values at � � and � s , The end point at � s is kept while end
points � � and �Qq are removed.

As a summary for Figure 6, for time �nm to � s , two end points on
the raw data stream are identified, i.e., the end points at � � and �Qs .
All other potential end points are removed by pruning on either %b
or the raw stream. The end points of %b are only a temporary tool
and will not be kept in the final piecewise linear representation of
the raw data stream. Also we have the following observations:t If an end point has one following line segment whose ampli-

tude is larger than the pruning threshold on both %b and raw

Figure 6: Illustration of the online segmentation and pruning.

data stream, that end point is fixed, i.e., it can not be removed
by further segmentation and pruning process.

t After pruning, if an end point has two following line seg-
ments, that end point is fixed.

t When a new potential end point is identified but no pruning
is needed, a new fixed end point will be produced.

t The online segmentation and pruning algorithm will only af-
fect the last three end points.

Combining the above observations, it is easy to understand that
the online segmentation and pruning can be done with varying-
length sliding windows, starting from the last fixed end point to the
current data of the stream. And there are at most three end points
that need to be kept for the following segmentation and pruning
procedure. All the fixed end points are updated into the database in
real time, so the database has up-to-date information.

3.4 Dynamic Adjustment
Occasionally a stock quote will have a dramatic change in price

caused by a stock split or stock merge. Upon stock merge (or split),
the current stock price will have a sharp increase (or decrease). A
dynamic adjustment is needed to correct the historical data, which
is adjusted with the same ratio for the change. In the case of a
merge, we only need to increase the historical data values according
to the merge ratio. But in the case of stock split, not only we need to
decrease the historical data values, but also we need to prune on the
historical PLR, since some line segments are under the thresholdOIe! . Thus a recursive pruning on the historical data is carried out.

Another optimization is to approximate the stream at different
granularities by constructing hierarchical PLR end points. The
database stores the base end points, which is obtained by PLR on
the raw streams with base O a , O d! and O e! . It can be used for similar-
ity matching of PLR query subsequence over 1 minute raw data and
with the same thresholds. When a query subsequence is with other
time granularities (such as 20 minutes) or with different thresholds
(larger than the base thresholds), a dynamic process to construct
the PLR with the same conditions as the query subsequence is per-
formed on the historical base PLR end points.

4. SUBSEQUENCE SIMILARITY MATCH-
ING

Our online event-driven subsequence similarity matching over
data streams is based on the piecewise linear representation of the
stream. In this section, we first provide details about our new def-
inition of subsequence similarity. Then we introduce event-driven
online subsequence similarity matching.

4.1 Subsequence similarity
The subsequences in our application are subsequences of end

points. The subsequence similarity matching in our application
finds the subsequences of end points that are similar to the query
subsequence. For simplicity, the retrieved subsequence and the
query sequence have the same number of end points.

There have been many research efforts for efficient similarity
search based on Euclidean distance or its variations [8, 13, 25, 30,
33], DTW distance [26, 32, 35], or LCS distance [11]. However,
they do not address the special requirements of financial data anyly-
sis. For example, the distance functions do not concern the relative
position of corresponding end points. We hereby propose a new
subsequence similarity definition which is more appropriate for fi-
nancial data analysis.

Our similarity distance function is based on the relative posi-
tions (the permutations) of the upper and lower end points in the
subsequence. The permutation of a sequence S with n elements is
a permutation of 1, 2, ..., n. It is calculated through the following
steps. Consider a stream of end points:u ' � # 5 � J

� � % J # 5 � J
� � % J j8jvj J # 5xw J

�
w
% �

First, we divide the end points into two subsets by putting all the
upper points into one subset and all lower end points into another.
In each subset, the end points are still in the order of time. Without
loss of generality, suppose that # 5 � J

� � % is an upper point and n is
even, we will get a new sequence of the n points asu4y ' �{z # 5 � J

� � % J # 5 � J
� � % J jvjvj J # 5xw 1 � J

�
w 1 �

%G| J
z # 5 � J

� � % J # 5 � J
� � % J jvjvj J # 5 w J

�
w
%0| �

Next we sort the X values of each subset. We will get another
sequenceu4y y ' ��z # 5 +@} J 5 +p~ J jvjvj J 5 +p��� }

| J z # 5 +p� J 5 +v� J jvj8j J 5 +
� | �

where 5 +o}�� 5 +p~P� jvjvj � 5 +8��� } , 5 +8��� 5 +v�P� jvj8j � 5 +
� ,� � J � � J jvjvj J � w 1 � is a permutation of 1, 3, ... , n-1 and � � J � � J jvj8j J � w is

a permutation of 2, 4, ... , n.

� � � J � � J jvj8j J � w 1 � J
� � J � � J jvj8j J � w � is called the permutation of S.

It represents the relative positions of the upper end points and the
lower end points. With the permutation of a subsequence, we can
define subsequence similarity as following:

DEFINITION 1. Given two subsequences S and S’:u ' � # 5 � J
� � % J # 5 � J

� � % J jvj8j J # 5 w J
�
w
% �

u y ' � # 5
y� J � y � % J # 5

y� J � y � % J j8jvj J # 5
y
w
J � y
w
% �

S and S’ are similar if they satisfy the following two conditions:t S and S’ have the same permutation.
t � # u J u y %���� where

� # u J u\y %�')F�C) #	� 9 w
1 �,
+p. �

�v�
5 + 2\�

C
5 +
� C �

5
y+ 24� C 5

y+ �8�

M*� 9 w
1 �,
+p. �

� # � + 2\� Cg� + %\C # � y + 24� Cg� y+ % � %
and � , � and ��� 0 and are user-defined parameters.

The � value is dependent on the raw data pruning threshold O e! , and
special applications. Our experiments show that the optimal value
of � is around �� 9 OEe! , when � = 1 and � = 0.

In all of our experiments on financial data we use � = 1 and � =
0. We have made our definition of similarity more general because
its metric properties can be proved in the more general case and
therefore it may prove useful for non-financial data as well.

The subsequence similarity definition seems brittle in the special
case of Figure 7. The values at K(� and K4� only differ a tiny bit in the
two sequences, but the permutations of the two sequences are dif-
ferent. They will not be considered similar using our similarity def-
inition. We can still handle the special case by changing the search
algorithm still using the similarity definition. In our search algo-
rithm, the permutations of the query subsequence and the retrieved
subsequences are compared first, if the same permutation, the dis-
tances are calculated. If a query subsequence has any pairs of upper
points (or lower points) with distance under a certain predefined
threshold, we consider the query subsequence to have two permu-
tations. Subsequences of the two possible permutations are both
searched. In the worst case, the distances between the query sub-
sequence and all possible subsequences will be computed. Since
after piecewise linear representation to reduce the dimensions, the
subsequence lengths of the PLR end points are below 10, the possi-
ble permutations are limited and the special cases are uncommon,
so the query performance is still reasonable.

The two parts of the similarity definition are both necessary and
complementary which can be illustrated in Figure 2. The permuta-
tion is concerned only with relative positions of the end points and
not with the differences of actual prices. The permutation alone
provides our similarity search with the flexibility of time scaling
and amplitude rescaling. The amplitude distance function is more
sensitive to the change of amplitudes. The two parts together give
our similarity search with flexibility, sensitivity and scalability.

Next we want to show that our distance function is a metric func-
tion and we can use metric distance indexing methods for faster
search. First we introduce the following lemma.

LEMMA 1. if a, b, c � 0,
� �<C ;6� � � �HC = � M � = C ;�� .

LEMMA 2. if a, b, c, 5 � , 5 ���4� , �0�
� 0, 5 � � 5 � and �4� �� � , then � # ; 5 � M = � �

% � � # ; 5 � M = � �
% .

Figure 7: Special cases that are brittle under our similarity def-
inition yet can be handled using our query engine.

Lemma 1 can be proved easily by listing all the possible combi-
nations of a, b and c. Lemma 2 can be proved by the properties of
inequality.

THEOREM 1. For sequences S, S’ (with the same length), the
distance d(S, S’) is metric.

PROOF. To prove � # u J u y % is metric, we need to prove it is sym-
metric and reflexive, and it satisfies the triangle inequality. Obvi-
ously � # u J u y %�'�� # u y J u %�� h and � # u J u %H' h , so � # u J u y % is
symmetric and reflexive. Next, we need to prove that � # u J u y % sat-
isfies the triangle inequality, i.e., � # u J u y % � � # u J u y y % M � # u y y J u y % .

Using the definition of the distance function � as a sum of an
amplitude component and a time component, if we prove the trian-
gle equality for both components, it will certainly be true for � by
Lemma 2. We thus show:

w 1 �,
+@. � #

� �
5 +

C �
5
y+ � % � w 1 �,

+p. � #
� �
5 +

C �
5
y y+ � M � �

5
y y+ C � 5

y+ � %
and

w 1 �,
+@. � #

� � � + C � � y + � % � w 1 �,
+p. � #

� � � + C � � y y+ � M � � � y y+ C � � y + � %
where �

5 +
' �
5 + 24�

C
5 +
� J � � + '�� + 24� C�� +

�
5 + ,

�
5
y+ , and

�
5
y y+ are positive since they are absolute val-

ues.
� � + , � � y + , and

� � y y+ are positive since � + 2\� ��� + according
the properties of time series data. And we know that � and � are
non-negative. The proof completes due to Lemma 1.

4.2 Event-driven subsequence match
Stream data comes in continuously. Performing similarity search

upon all incoming data is not efficient for massive stream data man-
agement, especially not for real time applications such as stock
market analysis. Another possible option is to do similarity search
after a fixed time period (for example every 20 minutes). This will
reduce the computation burden but it is insensitive to the changes
between two query times and may lose some potentially important
information. The event-driven similarity search proposed here will
reduce the huge computation burden over the system as well as
maintain sensitivity to changes.

An event means a new potential end point is being identified and
no pruning is need. For example, in Figure 6, when Kx# � � % , Kx# � � % ,Kx# � � % , Kx# � q % are identified as potential end points, they are called
events; while no event occurs when Kx# � � % J Kx# � s % are identified.
The event-driven subsequence similarity matching performs auto-
matic subsequence similarity search only at the time when there is
a new event. The similarity search is totally automatic. The search
requests are automatically generated by the online segmentation
and pruning algorithm. The automatically generated query subse-
quence is the most recent n fixed and potential end points (including
the newly identified potential end point at the event).

The automatic event-driven subsequence similarity has a trig-
ger, which separates the online similarity search (the query en-
gine) from the online segmentation and pruning process (the data
engine). The data engine is for data acquisition and database up-
dating, which runs all the time and processes each incoming stream
data. The query engine can be turned on or off without affecting the
data engine. This is a very friendly feature for application users.
For some time periods, an application user may not want to trade,
so the query engine is off while the data acquisition engine is still
on. When the user returns to trade, the query engine is turned on
with an up-to-date database.

5. TREND PREDICTION
The results of our online event-driven subsequence similarity

matching can be analyzed using different analytical or statistical
approaches for different applications. Practical utilizations of our
subsequence similarity matching include trend prediction, new pat-
tern recognition, and dynamic clustering of multiple data streams
based on subsequence similarity. As a sample application, trend
prediction is discussed in details as follows.

Each historical end point has a trend. A trend of an end point
is the tendency of the raw stream after a given number (�) of end
points from the current end point. The trend of one end point may
be different for different durations of time. We define the trend of
an end point based on the number of end points. Trend-K is the
overall trend from the current end point to the next ���o� end point.
For simplicity, we define four trends: UP, DOWN, NOTREND,
UNDEFINED. Given an end point E and its next �$�	� end point���

, the trend of E is defined as follows (where � is a user defined
parameter):

If
��� j 5

� � j 5 M � , E.trend = UP;
If
��� j 5 � � j 5

C � , E.trend = DOWN;
If
� j 5

C � � � � j 5
� � j 5 M � , E.trend = NOTREND;

If
���

does not exist, E.trend = UNDEFINED.

According to the above definition, the most recent k end points have
trend of UNDEFINED. All other historical end points have fixed
trends of UP, DOWN or NOTREND. k is important in determining
the trend of an event. Figure 8 gives an simple example of how
the value of k affects the trend. For example, when k = 1, b has a
DOWN trend (the price at = is lower than that at

;
by � or more);

but when k = 2, b has an UP trend (the price at � is higher than that
at
;

by � or more); and when k = 3, b has an NOTREND trend (the
price between � and

;
is less than �). Our experiments show that,

if we choose the value of � to be 10% to 20% of the average price
change over a period, it is optimal for short-term trading, such as
intra-day trading. Long-term trading favors a larger � value.

Subsequence similarity search returns a list of end points. Each
is the last end point of one retrieved subsequence. Simple statistical
information are carried out on trends of retrieval end points, and
the statistical results is used to predict the trend at the query event.
Our statistical approach is simply to count how many UP, DOWN,
NOTREND end points. Then we calculate the percentage of each
trend D using the following formula:

 #�¡ %('£¢ ?6¤<B �¥� B �S�b¦��3���3F0� ��? ��F�� A�D �	�Q§�� B �3F0� ¡� ? ��� � ¢ ?6¤ � �o��B �¥� B �S�3¦��3�¨�3FG� ��? ��FG� A 9) h�h :
If there is a large number of similar subsequences at an event,

its trend can be predicted based on F(D) value of each trend. We
propose the following scheme:

if © ª¬«	­�®"¯�°�ª¬«o±{²"³µ´<¯r©I¶·ª¬«	´<²�¸�¹�º�´�±{¯�»½¼ ,
predict NOTREND;

Figure 8: Trends of end points.

otherwise,
if ª¬«�­�®"¯X¾·ª¬«o±{²"³µ´<¯ , predict UP;
else, predict DOWN.

Here ¿ is a user-defined threshold, e.g. 5%. For instance, if the
similarity search retrieved 1000 similar subsequences from history,
and the statistics show historical trends with 70% UP, 10% DOWN,
20%, the future moving trend of the query event can be predicted
as UP. This is because F(UP)-F(DOWN)=60%, which is larger than
F(NOTREND)+ ¿ (=25%). As another example, if the historical
trends are 51% UP and 49% DOWN, even though
F(UP) L F(DOWN),
we really should predict NOTREND since they are close.

6. PERFORMANCE EVALUATION

6.1 Experimental setup
We have evaluated the performance of our online event-driven

subsequence similarity search based on the correctness of trend pre-
dictions. Real stock data are used in our experiments. For each in-
coming data stream, aggregated values per minute have been accu-
mulated. More than 3,000,000 data points from 20 different stocks
were used in experiments. First, about 3,000,000 historical data
points are used as a test bed to set up all parameters and build the
initial database. Another 500,000 new data points are tested for on-
line similarity search followed by trend prediction. For simplicity,
for one query, the query is performed on a single stream, which is
the same as the query subsequence.

All our experiments are conducted on a DELL OPTIPLEX GX
260 with Pentium(R) 4 processor, 2.66GHz CPU, 1GB RAM. Se-
ries of experiments have been carried out on how to choose each pa-
rameter. For example, there is a series of experiments for p-interval
moving average with p = 8, 10, 12, 15, 18, 20, 22, 25. Another
series is for segmentation with O6d! = 0.05, 0.1, 0.12, 0.15, 0.2, 0.3
and O e! = 0.1, 0.15, 0.2, 0.3. For the experiments discussed below,
the following parameter setting is constant with moving average

Figure 9: Correctness of trend predictions. (a) With different similarity measures; (b) By different query mechanisms; (c) Average
delay time to identify an end point.

p = 20, segmentation sliding window size m = 10, segmentation
threshold À3Á = 0.02, pruning threshold À�ÂÃ = 0.1. Other parameters
depend on the properties of raw data streams. ÀEÄÃ is about 10% -
20% of the average daily price change of a raw data stream. The
similarity threshold Å of our distance function is ÆÇ�È À ÄÃ . Trend dura-
tion K, trend range É are user-specified as is the subsequence length
parameter n. Typically, Ê is between 3 and 8.

Although we defined similarity using a distance function which
includes time as well as amplitude, we do not use time here (Ë is
zero and Ì is one). Our new similarity measure is thus called Perm
+ Amp, denoting that it is based only on the permutation and the
amplitude.

Our experiments demonstrated that raw streams can be grossly
grouped according to their average price changes over a fixed time
period. If the average daily price changes are almost the same, the
best parameter setting on one stream is almost the best setting on
another stream. But the same setting may have quite different per-
formance for two streams with different average price changes. The
following discusses the performance of one group of streams whose
average daily price changes are between $1.00 to $3.00. Other
groups have displayed the same pattern with different parameter
setting.

6.2 Experiments on similarity definition
Prediction accuracy using our new similarity measures is com-

pared with similarity measures based on Euclidean distance. The
Euclidean distance mentioned here allows subsequence similarity
with price shifts and time scaling. Each experimental set has more
than 1,600 queries and 500 predictions. The comparison is based on
the accuracy in trend prediction. Figure 9a displays the percentage
of correct predictions in 5 experimental sets. Accuracy based on
our new similarity measure (Perm+Amp), which uses an amplitude
distance function over permutation, achieved superior results. The
correctness of prediction based on the Euclidean distance function
(Perm+Euc) is 8% less than that based on our new similarity mea-
sure (Perm+Amp). Trend predictions based on permutation only
(Perm only) and amplitude distance function only (Amp only) are

also summarized in Figure 9a. Their performance is much less ac-
curate than the combined one. These results also prove that the two
parts of our similarity definition are complementary to each other
and both are important. The percentage of correct trend predictions
decreases more than 10% if using similarity measure based on per-
mutation only or the distance function only. The same conclusion
can also be summarized with Euclidean distance by comparing the
performance among permutations only (Perm only), Euclidean dis-
tance only (Euc only), and the combination of permutations and
Euclidean distance (Perm+Euc).

6.3 Experiments on event-driven matching
Our query engine uses an event-driven similarity search mech-

anism instead of querying for a fixed period. The correctness of
trend predictions is summarized in Figure 9b. A series of experi-
ments have been performed over different fixed time periods, rang-
ing from 1 minute (FT1) to 30 minutes (FT30). FTi means query
every i minutes. It is clearly shown that event driven subsequence
similarity search (Perm+Amp) has outperformed search over any
fixed period FTi. The different fixed time period searches have al-
most the same average correctness. This is because we use the most
recent end points to search the database and predict the movement
for the query time. The query sequence does not concern how far
away the query point to the last identified potential end point (the
delay time). It is easy to understand that the closer the query point
to the last end point, the shorter delay time, and thus the better pre-
diction accuracy. The fixed time period queries have almost the
same prediction correctness because the correctness is the average
accuracy in prediction.

Figure 9c shows average delay time for different query mecha-
nisms. The delay time for event-driven similarity was 3min, while
the delays for all the fixed periods were all around 7min. This delay
time explains the lower correctness in trend prediction with fixed
time periods. Each line segment covers about 30 raw data points.
Although search over a fixed period could gives better prediction
when the query point is close to the last end points, there is more
changes the query points with fixed period would be far away from
the last end point.

Figure 10: Subsequence similarity matching over differenct data streams. (a) Correctness of trend predictions; (b)The correspond-
ing data streams; (c) The unadjusted raw EBAY stream.

6.4 Experiments on data streams
Experiments on the correctness of trend prediction over different

streams have been performed to test the effects by stream prop-
erties. Figure 10a compares the correctness of trend predictions
using different similarity measures (Z{Í3ÎEÏÑÐ�Ò�Ï<Ó and Z{Í3ÎEÏÑÐÔ{Õ�Ö

) and different search mechanisms over different data streams.Z{Í3ÎIÏgÐHÒ�Ï�Ó and Z{Í3ÎIÏgÐ Ô{Õ�Ö use event-driven similarity match-
ing. Ò¨×�Ø�Ù�Ú¬Û¬Ü is the average correctness of prediction with fixed
time interval from 1min to 30min. It can be seen that the event-
driven similarity search using our new similarity measure has bet-
ter performance in all the streams. Figure 10b shows the raw data
streams we used in our experiments whose results are in Figure 10a.
From looking at these raw data streams, we can see that our method
works well for a wide variety of data streams. The correctness of
trend predictions are more than 60% for all the streams. It works
better when the market is in an overall bull/bear market (ERTS,
COF and QLGC), where the trend predictions are more than 70%
correct. Even when the market is a no-trend market (Ò¨ÝÞØ¨ß andÝáà½â
Ý), our prediction scheme still works well, with prediction
correctness more than 60%. On the contrary, the correctness of
predictions based on Euclidean distance or with fixed time interval
varies according to the characteristics of different streams, some-
times only achieving totally random predictions (50% correctness).

The stream of EBAY is of great interest because it requires dy-
namic adjustment as described in Section 3.4. Figure 10b shows the
adjusted stream of EBAY and Figure 10c is the raw EBAY stream
without adjustments. Figure 10c starts with a bear market. Then it
changes to a bull market, followed by a no-trend market (before the
dashed line). At the time of the dashed line, the stock has a share
split of 2:1 (one share to two shares split) and the price has a sharp
drop from $110.00 to $55.00. Our event-driven subsequence sim-
ilarity matching dynamically adjusts this special situation grace-
fully, with 70% correct predictions. The corresponding predictions

with Euclidean distance are only 60% correct. The correctness of
predictions based on fixed time intervals is much worse (almost
random — 51% correct).

6.5 Experiments on query subsequence length
and trend duration

A series of experiments has been performed to test the effect of
subsequence lengths and trend durations. For financial data analy-
sis, the lengths of subsequences of the resulting PLR range from 3
to 8. Our experimental results show that when the average lengths
between two adjacent PLR end points is between 30 to 40, our
method will have better prediction results. When the subsequence
has 3 points, there are 2 intervals (line segments). Thus the corre-
sponding subsequence of raw streams contains 60 to 80 data points.
When the subsequence has 8 points, there are 7 intervals. Thus the
corresponding subsequence of raw streams contain 210 to 280 data
points.

For each of the experiments shown in Figure 11, we use the same
streams and query periods using our method. We only vary the
query subsequence length. For longer query subsequences, there
are more permutations. Hence there are fewer similar subsequences
available for distance comparison. In spite of this, Figure 11a
shows that longer query subsequences result in better prediction
correctness. Figure 11b illustrates the relative number of similar
subsequences (with same permutation) based on length. In addi-
tion, because there are fewer similar subsequences, the number of
times a prediction can be made(i.e., ”UP” or ”DOWM”, but not
”NOTREND”) is smaller with longer query subsequences and this
is also illustrated in Figure 11b.

Figure 11c shows the correctness of trend predictions with dif-
ferent trend duration ã . We can see that the closer the prediction
events to the query events, the more accurate the predictions are.

Figure 11: Trend predictions with different subsequence lengths and trend durations. (a) Correctness of trend predictions with dif-
ferent subsequence lengths; (b) Relative prediction accuracy with different subsequence lengths; (c) Correctness of trend predictions
with different trend duration ã .

6.6 Experiments on CPU cost and query time
We define the CPU cost as the average computation time for sub-

sequence similarity matching by sequential scan. The relative CPU
cost is measured relative to the CPU cost of FT1(one minute time
periods). As shown in Figure 12, it is easy to understand that the
CPU cost decreases as the fixed query time intervals increase. It
also shows CPU cost of event-driven subsequence similarity match-
ing is about the same as FT30 (30-minute time periods). The CPU
cost of similarity matching based on permutations and a distance
function (Amp+Perm and Euc+Perm) is only a little higher based
on permutations (Perm Only). This is because we store the per-
mutations of historical data and thus save run time computations.
We only compute the distance between the historical subsequences
whose permutations is the same as that of the current query sub-
sequence. It also explains why similarity matching methods based
on distance functions only (Amp Only and Euc Only) have higher
CPU cost. They do not have the pre-computed permutations as a
filter, so they need to compute the distance between each histori-
cal subsequence and the query subsequence. So our event-driven
similarity matching mechanism has greatly reduced the CPU cost.

Our event-driven similarity matching runs in real time. Using
similarity based on permutations and the amplitude distance func-
tion, the average response time for a single query is only 130 milli-
seconds for subsequences with length 7 and queries on the database
with 100,000 PLR end points, which corresponds to 3,000,000 raw
stream data points. The raw financial data streams come in with ir-
regular time intervals, and we aggregated the raw data with a fixed
time interval, which is 1 minute in our case. A 130-millisecond
responding time is fast enough for real-time predictions.

7. CONCLUSIONS & FUTURE WORK
In this paper, we introduced a new approach for event-driven

subsequence similarity matching based on a newly defined subse-
quence similarity measure over financial data streams. Upon study-
ing the special requirements and real-time application needs of fi-
nancial data analysis, we proposed a new simultaneous online seg-
mentation and pruning algorithm for piecewise linear representa-
tion of raw financial data streams. The new algorithm used tiered

Figure 12: Relative CPU cost to evaluate query with different
similarity measures and matching mechanisms.

processes for incremental segmentation. It features quick identi-
fication of new end points yet maintains accurate segmentation.
We also defined a new subsequence similarity measure for subse-
quence matching. The new similarity measure is composed of two
parts, a permutation and a distance function. Experimental results
showed it has better performance than subsequence similarity mea-
sures based on Euclidean distance. An event-driven online subse-
quence similarity search approach is proposed, in which automatic
online queries are generated only at a time when a line segment
is generated. The new search mechanism had about 30 times less
computational burden than the scheme to query at each time in-
stance. Performance experiments demonstrated that event-driven
search outperformed the searches with any fixed time period. Us-
ing the similarity search results as a guidance, we have achieved
promising trend prediction correctness (average 68%). Our ap-
proach works well for a wide variety of streams. The query re-
sponse time is fast for real time applications.

Future research can proceed in several directions. Our immedi-
ate plans include incorporating indexing in the search algorithm.
Since we have shown that our distance function is metric, a num-
ber of indexes [7, 9, 10, 34, 36, 37] may be applicable. Another
possibility is to explore a weighted statistical function to improve
trend prediction. The weighted statistics will consider the effects
of similarity distance and time difference. Still another problem
is finding an algorithm for dynamic clustering of multiple streams.
Last, scheduling and concurrency control of multiple queries over
massive data streams in real-time applications is also of great re-
search interest.

8. REFERENCES
[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A Framework

for Clustering Evolving Data Streams. VLDB, pages 81–92,
2003.

[2] R. Agrawal, C. Faloutsos, and R. Swami, A. Efficient
Similarity Search in Sequence Database. FODO, pages
69–84, 1993.

[3] S. Babu and J. Widom. Continuous Queries Over Data
Stream. SIGMOD Record, 30(3):109–120, 2001.

[4] D. Barbara and P. Chen. Using the Fractal Dimension to
Cluster Datasets. SIGKDD, pages 260–264, 2000.

[5] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: An Efficient and Robust Access Method for
Points and Rectangles. In ACM SIGMOD, pages 322–331,
1990.

[6] J. A. Bollinger. Bollinger on Bollinger Bands. McGraw-Hill,
first edition, 2001.

[7] T. Bozkaya and M. Ozsoyoglu. Distance-Based Indexing for
High-Dimentional Metric Spaces. SIGMOD, pages 357–368,
1997.

[8] K.-P. Chan and A.-C. Fu. Efficient Time Series Matching by
Wavelets. ICDE, pages 126–133, 1999.

[9] T. Chiuch. Content Based Image indexing. VLDB, pages
582–593, 1994.

[10] T. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient
Access Method for Similarity Search in Metric Space.
VLDB, pages 426–435, 1997.

[11] G. Das, D. Gunopulos, and H. Mannila. Finding Similar
Time Series. PKDD, pages 88–100, 1997.

[12] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining
Stream Statistics over Sliding Windows. SODA, pages
635–644, 2002.

[13] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast
Subsequence Matching in Time-Series Database. In
SIGMOD, pages 419–429, 1994.

[14] E. Fink and K. B. Pratt. Indexing of compressed time series.
[15] A. J. Frost and R. R. Prechter. Elliott Wave Principle. New

Classics Library, first edition, 1998.
[16] G. P. C. Fung, J. X. Yu, and W. Lam. News Sensitive Stock

Trend Prediction. PAKDD, pages 481–493, 2002.
[17] L. Gao and X. S. Wang. Continually Evaluating

Similarity-Based Pattern Queries on a Streaming Time
Series. In SIGMOD, pages 370–381, 2002.

[18] L. Gao, Z. Yao, and X. S. Wang. Evaluating Continuous
Nearest Neighbor Queries for Streaming Time Series via
Pre-fetching. In CIKM, pages 485–492, 2002.

[19] J. Gehrke, F. Korn, and D. Srivastava. On Computing
Correlated Aggregates over Continual Data Streams.
SIGMOD, pages 126–133, 2001.

[20] A. C. Gilbert, Y. Kotidis, and S. Muthukrishnan. Surfing
Wavelets on Streams: One-pass Summaries for Approximate
Aggregate Queries. VLDB, pages 79–88, 2001.

[21] L. Golab and M. T. Ozsu. Issues in Data Stream
Management. SIGMOD Record, 32(2):5–14, 2003.

[22] S. Guha, N. Rastogi, R. Motwani, and L. O’Callahan.
Clustering Data Stream . IEEE FOCS Conference, pages
359–366, 2000.

[23] T. Hellstrm and K. Holmstrm. ”Predicting the Stock
Market”. 1998.

[24] E. J. Keogh, K. Chakrabarti, S. Mehrotra, and M. J. Pazzani.
Locally Adaptive Dimensionality Reduction for Indexing
Large Time Series Databases. In SIGMOD, pages 151–162,
2001.

[25] E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra.
Dimensionality reduction for fast similarity search in large
time series databases. Knowledge and Information Systems,
3(3):263–286, 2001.

[26] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An Online
Algorithm for Segmenting Time Series. In ICDM, pages
289–296, 2001.

[27] D. Komo, C. Chang, and H. Ko. ”Neural Network
Technology for Stock Market Index Prediction”. ISSIPNN,
pages 543–546, 1994.

[28] F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently
Supporting ad hoc Queries in Large Datasets of Time
Sequences. In SIGMOD, pages 289–300, 1997.

[29] X. Liu and H. Ferhatosmanoglu. Efficient k-NN Search on
Streaming Data Series. In SSTD, pages 83–101, 2003.

[30] Y.-S. Moon, K.-Y. Whang, and W.-S. Han. General Match: a
Subsequence Matching Method in Time-series Databased
Based on Generalized Windows. In SIGMOD, pages
382–393, 2002.

[31] L. O’Callaghan, A. Meyerson, R. Motwani, N. Mishra, and
S. Guha. Streaming-Data Algorithms for High-Quality
Clustering. ICDE, pages 685–, 2002.

[32] S. Park, S.-W. Kim, and W. W. Chu. Segment-Based
Approach for Subsequence Searches in Sequence Databases.
SAC, pages 248–252, 2001.

[33] D. Rafiei and A. Mendelzon. Similariy-Based Queries for
Time-series data. SIGMOD, pages 13–24, 1997.

[34] J. Uhlmann. Satifying General Proximity Similarity Queries
with Metric Trees. IPL, 4:175–179, 1991.

[35] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient
Retrieval of Similar Time Serquences under Time Warping.
In ICDE, pages 201–208, 1998.

[36] P. N. Yianilos. Data Structures and Algorithms for Nearest
Neighbor Search in General Metric Spaces. Proc.
ACM-SIAM Symposium on Discrete Algorithms, pages
311–321, 1993.

[37] C. Yu, B. Ooi, K. Tan, and H. Jagadish. Indexing the
Distance, an Efficient Method to KNN Processing. VLDB,
pages 421–430, 2001.

[38] Y. Zhu and D. Shasha. StatStream: Statistical Monitoring of
Thousands of Data Streams in Real Time. VLDB, pages
358–369, 2002.

