Holistic UDAFs at Streaming Speeds

Graham Cormode™ Theodore Johnson Flip Korn
Rutgers University AT&T Labs—Research AT&T Labs—Research
graham@dimacs.rutgers.edu johnsont@research.att.com flip@research.att.com
S. Muthukrishnany Oliver Spatscheck Divesh Srivastava
Rutgers University AT&T Labs—Research AT&T Labs—Research

muthu@cs.rutgers.edu spatsch@research.att.com divesh@research.att.com

ABSTRACT tion of n, the number of data items in the stream. Examples of such
algorithms are in [32, 24, 33]. We refer to themsadection-based
salgorithms. Typically, the order in which the data is presented in-
tfluences the performance of these algorithms. The universe-driven
algorithms work on a virtual “array” of the attribute values and
maintain various inner-products or “sketches” over the data stream.
They typically have space and accuracy bounds a functidd,of

In this paper, we study the performance implications of using he si fth . f hich th i | d
user-defined aggregate functions (UDAFSs) to incorporate selection- (N€ Size of the universe from whicf the attribute values are drawn.
Examples of such algorithms are in [25, 9, 21]. We refer to them

based and sketch-based algorithms for holistic aggregates into a . . ; .
data stream management system’s query processing architecture?sSketCh'basealgor'thms' Typically, the order in Wh.'Ch the d?ta .
We identify key performance bottlenecks and tradeoffs, and pro- IS preser)ted does not affect th.e sketch t.hese algorlthms maintain,
pose novel techniques to make these holistic UDAFs fast and space-b”t identical data values_, over different universe sizes may have dif-
efficient for use in high-speed data stream applications. We evalu-ferent sketches. .S(_electlon and Sl.(etCh pased algorlthms are ‘known
ate performance using generated and actual IP packet data, focustor arange of holistic aggregates including quantiles, heavy hitters,
ing on approximating quantiles and heavy hitters. The best of our count distinct, rare counts, correlated aggregates, etc.

current implementations can process streaming queries at Oc4g Second, there is a concerted effort to build data stream manage-
speeds (2x 2.4Gbps). ment systems (DSMSs) either for general purpose or for a stream-

ing application. Traditional database systems store data, maintain
them under transactions and support query processing on a con-
1. INTRODUCTION sistent view of the data evolving under transactions. Emerging
The phenomenon of data streams research is evident. This haspplications in data streams shift the emphasis of a database sys-
been led by two research directions in the database community. tem. In data stream applications, data arrives very fast and the
First, powerful algorithms have been developed for processing rate is so high that one may not wish to (or be able to) store all
data in a stream. They work in an abstracted model of data streamsthe data. These DSMSs devise methods to pipeline tuples through
where items are presented one after another; they use small amounguery processing mechanisms, and schedule operations to maxi-
of storage, compute various holiséggregates on the stream and mize throughput, etc. Many of the DSMSs are motivated by moni-
provide accuracy guarantees. At the high level, these algorithmstoring applications. Example DSMSs are in [6, 35, 36, 7, 12].
can be divided into two categoriedata-drivenanduniverse-driven The quintessential application seems to be the processing of IP
The data-driven algorithms select one or more data items that ap-traffic data in the network. Routers forward IP packets at great
pear in the stream and maintain statistics about their distribution in speed, spending typically a few hundred nanoseconds per packet.
the stream. They typically have space and accuracy bounds a func-Processing the IP packet data for a variety of monitoring tasks —
“Sunnorted by NSE TR 0220280 and NSF EIA 02-05116 keeping track of statistics, provisior_ling, billing and detecting qet-
Vs Pp o by NSE EIA 0087022 NSE ITR 0220280 . d NSF yvork at_tacks — at the speed at which packgts are forwarded is an
B X%%O{)Sel 16y ' an illustrative example of data stream processing. One can see the
The term “hoiistic" was used in [23] to describe functions such as need fo.r h-OHStIC aggregates in thls- seenario quantnes prowdg Sim-
Median() and Mode() for which there is no constant bound on the p!e SIat'St'Cal summary of the t_rafﬂc carried l_Jy a I|nk_, heavy hitters
size of the storage needed to exactly compute them. nicely describe significant portion of the traffic on a link, and count
distinct and count rare are indicators for normal activity vs activity
under denial of service attack. Thus, monitoring holistic aggregates
on IP traffic data streams is a compelling application.
Permission to make digital or hard copies of all or part of this work for ~ Besides the straightforward use of holistic aggregates, our inter-
personal or classroom use is granted without fee provided that copies areactions with Gigascope users reveals the need for composition and
not made or distributed for profit or commercial advantage, and that copies grouping based on holistic aggregates. For example, a common
bear thiS notice and the full citation Of.1 the first pa_ge. To cc_)py otljerwise,'t_o network ana|ysis query is one such as, “for every source IP and
repuplls_h, to post on servers or to redistribute to lists, requires prior specific 1 hour interval, report the median, 95th percentile, and 99th per-
permission and/or a fee. centile of the TCP round trip time”. Similar grouping queries but

SIGMOD 2004June 13-18, 2004, Paris, France. L -~ .
Copyright 2004 ACM 1-58113-859-8/04/06 $5.00. with different holistic aggregates (such@OUNT DISTINCT in

Many algorithms have been proposed to approximate holistic ag-
gregates, such as quantiles and heavy hitters, over data stream
However, little work has been done to explore what techniques are
required to incorporate these algorithms in a data stream query pro-
cessor, and to make them useful in practice.

military monitoring applications can be found in [38, 4]. 2. RELATED WORK

Despite the convergence of a compelling application like IP traf- | the area of data stream algorithms, solutions are known for
fic data analysis and development of the principles of DSMSs, there computing specific holistic aggregates. As we described earlier, the
has been little attention paid to the task of computing holistic ag- known algorithms can be divided into two categories: data-driven
gregates in a DSMS for a real application such as network moni- anq universe-driven, with selection-based and sketch-based algo-
toring. Engineering holistic aggregation in a DSMS for real, very yithms respectively. Many selection-based and sketch-based algo-
high speed data streams is a challenge. Query optimization evenyjthms are known for holistic aggregates of our interest, i.e., finding
for simple holistic aggregate computation in a data stream is not quantiles [33, 24, 22] and heavy hitters [28, 32, 8]. These resullts are
well understood. _ o the most relevant to our work here. Selection- and sketch-based al-

In this paper, we address this gap between principles and meth-qorithms are known for other holistic aggregates such as correlated
ods versus real needs in a practical application. We study the per-aggregates [18], and distinct counting [16, 19, 9]. But more gener-
formance implications of using user-defined aggregate functions gjly, data stream algorithms are known for a variety of problems in-
(UDAFs) for incorporating both selection-based and sketch-based cluding wavelets [21], histograms [20, 25, 37], set expressions [17],
algorithms for holistic aggregates into a data stream managementcomplex queries [14], clustering [26], decision trees [15], etc. An
system’s query processing architecture. We use our streaming datakRggview of this area relevant to our study can be found at [5, 34],
Gigascope [11, 12, 13], as a testbed and network traffic as our datagng in tutorials [17]. Many of these algorithms have typically been
source. Our contributions are as follows. tested on synthetic datasets, or in some cases, on real IP network
traces. We are not aware of any of these methods that have been
directly incorporated into a “live” DSMS.

The area of DSMSs has seen extensive activity as well. A num-
er of DSMSs have been proposed and built into prototypes in-
cluding Aurora [6], Telegraph [7], Stream [35], Tribeca [36], and
Gigascope [12]. Some of these DSMSs provide methods to do (ran-
dom) sampling (e.g., [35]), and the collection of continuous queries
for the military application that has been accumulated at Stanford
presents examples using holistic aggregates. However, we do not
2. We evaluate performance using generated and actual IP packéiow of any detailed study of the performance of holistic aggre-

data on a “live” DSMS — Gigascope running at an IP router gates within these DSMSs. There has also been work on DSMSs

— focusing on approximating quantiles and heavy hitters. for specific applications like streaming data from sensors [31] and

We derive more than half a dozen different implementation financial applications [30]; again, no detailed performance study of

strategies for these holistic aggregates and test them with realholistic aggregates is known in these application at streaming data

as well as simulated data. The best of our current implemen- Speeds we consider in this paper. The recently proposed ATLaS
tations can process streaming queries at up to OC48 speeddJDAF specification [38] supports, among other interesting fea-

(2x 2.4Gbps), and is practical as an IP network data stream tures, streaming UDAFs. See Section 3.2 for more discussion.

analysis engine in large ISPs.

Our implementation work is by necessity closely tied to the Gi- 3. INTEGRATING UDAFS IN GIGASCOPE

gascope architecture. However there are some general lessons to Gigascope [11, 12, 13] has a special architecture for handling
be learned: very high speed data streams. In this section, we discuss some

L . relevant aspects of the Gigascope architecture and how we integrate
1. Early data reduction is critical for complex querying of very UDAFs into Gigascope

high speed data streams. So we believe that a two-level archi-

tecture of query processing is highly suitable in the general 3.1 Gigascope Architecture
context of a DSMS. '

1. We identify key performance bottlenecks and tradeoffs, and
propose novel technigues to make holistic UDAFs—selection-
based as well as sketch-based ones—fast and space-efficienB
for use in high-speed data stream applications. Our tech-
nigues rely on judicious combination of low level aggrega-
tion on IP traffic data streams at the network router level with
higher level composition, and adapting to the data character-
istics.

Gigascope is designed for monitoring very high speed data streams
2. There is often a range of early data reduction strategies to using inexpensive processors. To accomplish this goal, Gigascope
choose from for processing approximate complex aggregates,uses an architecture which is optimized for its particular applica-
including use of appropriateartial or subaggregation. tions.
First, Gigascope is a stream-only database — it does not support
3. The most appropriate strategy depends on the streaming ratestored relations or continuous queries. This restriction greatly sim-
as well as the available processing resources; choosing theplifies and streamlines the implementation. However, since there
best strategy is a complex query optimization problem. are no continuous queries (as implemented in, e.g., [35]) there are
no explicit query evaluation windows, which are necessary to un-
block operators such as aggregation and join. Instead, attributes
in streams can be labeled with a “timestampness”, such as mono-
tone increasing. The query planner uses this information to deter-

5. Adaptive implementations of “heavy-weight” approximations mine how (a_nd whether) a blocking operator can be unplocked. In
such as sketches make them practical even in the presence oft" @ggregation query, at least one of the group-by attributes must

highly skewed data, so there is a potential in general purpose have a timestampness, say monotone increasing. When this at-
DSMSs too. tribute changes in value, all existing groups and their aggregates

are flushed to the operator’s output (similar to thenbleoperator
Our work sheds light on the broader intricacies of query opti- [6]). The values of the group-by attributes with timestampness thus
mization in a DSMS. Even for simple holistic UDAFs, the query defineepochsn which aggregation occurs, with a flush at the end
optimizer has a large number of choices. of each epoch.

4. Approximate complex aggregates are quite effective, provid-
ing accuracy guarantees while vastly reducing the processing
load.

Second, Gigascope has a two-level query architecture, where thesplit the TERMINATE function into an OUTPUT function and a
low level is used for data reduction and the high level performs DESTROY function. Low-level Gigascope queries require an addi-
more complex processing. This approach is employed for keeping tional function, FLUSHME. Recall that low-level queries are sim-
up with high streaming rates in@ntrolledway (i.e., guaranteed ple, fast queries for data reduction. Holistic aggregate data struc-
accuracy) in contrast to some existing DSMSs which employ load tures might be large and/or require occasional expensive restructur-
shedding [6, 4]. High speed data streams from a Network Interface ing. The FLUSHME call is used by a low-level UDAF to indicate
Card (NIC), are placed in a large ring buffer. These streams are that it is “full” and should be flushed to a high-level query to com-
calledsource streamt distinguish them from data streams created plete its processing. Therefore we can use a small and fast data
by queries. The data volume of these source streams are far toostructure at the low-level; partial processing will be completed at a
large to provide a copy to each query on the stream. Instead, thehigher level.
queries are shipped to the streams. If a qu@rig to be executed We inform Gigascope of the UDAFs that might occur in a query
over source strear@, then Gigascope creates a subqugryhich by providing UDAF declarations. A UDAF declaration must in-
directly accesseS, and transforms) into Q" which is executed clude the UDAF name, its return type, the types of its parameters,
over the output fronq. In general, one subquery is created for every and its scratchpad type. For example,
table variable which aliases a source stream, for every query in the . L
current query set. The subqueries read directly from the ring buffer. int UDAF char(36) approx_median(int)

Since their output streams are much smaller than the source streamgeclares that appraomedian is a UDAF which accepts an integer,
the two-level architecture greatly reduces the amount of copying uses 36 bytes of scratchpad storage, and returns an integer.
(simple queries can be evaluated directly on a source stream). In order to apply appraxnedian to values derived from a source

The subqueries (which are called “LFTAs”, or low-level queries, data stream, we must also specify the subaggregate (used in the
in Gigascope) are intended to be fast, lightweight data reduction |ow-level query) and the superaggregate (used in the high-level
queries. By deferring expensive processing (expensive functions query). For example,
and predicates, joins, large scale aggregation), the high volume]
source stream is quickly processed, minimizing buffer requirements. iNt UDAF char(36) [low_approx_med, high_approx-med]

The expensive processing is performed on the output of the low _ approx_median(int)]
level queries, but this data volume is smaller and easily buffered. vstring UDAF char(2800) low_approx-med(int)
Depending on the capabilities of the NIC, we can push some or all int UDAF char(36) high_approx_med(vstring)

of the subquery processing into the NIC itself. In the testbed de- yociares that lovapproxmed is the subaggregate and that

scribed in Section 5, the NIC used for the synthetic data is capable high.approxmed is the superaggregate of apprordian. If a

of processing a type of projection operator, while the NIC used for 4,eryQ references appramedian on a value derived from a source

the live data r_las no special processing capabllltle_s. In general, thestream, it is transformed intp which references lovapproxmed

most appropriate strategy depends on the streaming rate as well 88ndQ" which references highpproxmed on the lowapproxmed

the available processing resources. Choosing the best strategy is g¢ q1. Note that the return value of loapproxmed, a variable-

complex query optimization problem, the goal of which is to max- |ength string which represents the UDAFs state, is the value ac-

imize the amount of data reduction without overburdening the low cepted by highapproxmed.

level processor and thus causing packet drops. . In many queries, we want the UDAF to return many values. For
To ensure that aggregation is fast, the low-level aggregation oper- gy ample, "a query might ask for the median, the 95th percentile, and

ator uses a fixed-size hash tablefo_r maintaining the dn_‘fe_rent groupsthe 9gth percentile values of packet round trip times. Computing

of aGROUP BMfa hash table collision occurs, the existing group the UDAF three times is inefficient, instead we @séractor func-

and its aggregate are ejected (as a tuple), and the new group Useggnsto declare that the UDAF needs to be computed only once.

the old group’s slot. That is, Gigascope computes a partial aggre- an extractor function is just a macro for specifying that a function
gate at the low level which is completed at a higher level. The s g pe called on a UDAF. For example

query decomposition of an aggregate quérys similar to that of . _ . o

subaggregates and superaggregates in data cube computations [23].int EXTR percentile_fcn approx_quantile percentile(int; int)
Th'rC.j’ Glgas_cope cregtes queries by generatlng_C and C.:++ COde'is a macro which transformgercentile(len,95) into

which is compiled and linked into executable queries. To integrate ercentile_fcn(approx_quantile(len),95). The duplicate references

a UDAF into Gigascope, we add the UDAF functions to the Gigas- P N pprox.q s P

cope library and augment Gigascope query generation to properlyto approxquantile are now easily recognized. The appgmantile
handle references to UDAFs (Section 3.2). aggregate returns a searchable data structure when the OUTPUT

function is called. The percentilien function performs a search
.pe . on this structure. The aggregate’s DESTOY call will release the
3.2 UDAF SpeC|f|Catlon resources used by the return value, if necessary.

As discussed in Section 3.1, incorporating a UDAF into Gigas- We designed our UDAF specification to be an easily implemented
cope is a matter of incorporating the UDAF calls into the Gigas- extension to the conventional UDAF specification, but which would
cope library, and providing the query planner with the specification support aggregate query decomposition and multiple return values.
of the UDAF. We modified Gigascope so that it can understand A more sophisticated specification, ATLaS has been recently pro-
UDAF specifications and make calls to the UDAF functions at the posed [38]. One of the benefits of the ATLaS specification is that
appropriate places. the UDAF functions are defined in SQL within the declaration.

A UDAF is commonly composed of three functions [27]: an While this property is highly desirable for general purpose DBMS
INITIALIZE function, which initializes the state of acratchpad extensibility, for several reasons we felt that the traditional method
space, an ITERATE function, which adds a value to the state of of C-language UDAF function definitions was more appropriate for
the UDAF, and a TERMINATE function, which releases UDAF re- our purposes. For one, it is easier to implement and makes fewer
sources and returns a value. In order to support multiple return demands on the query optimizer. For another, Gigascope is a spe-
values from the same UDAF computation (discussed below), we cialized system. The UDAFs are likely to be written by experts

for whom the highest possible performance is the critical issue and ;‘fer?’sei((;‘)’ :Sh?zxi;gi;m)i s summary at LLQ of size M

who are more familiar with C than with SQL. The easy extensibility » sy, (n) = h(v;:g;; Aj)i is summary at HLQ of size N *
described in [38] is a lesser concern. nghe_ result is SS(m +n) of size M +N ¥
i inhic cimi _ i:=j:=1 =3
Ir_1 the following query, which is 3|m||_ar to those used for the ex S-[M + 1] = Sn[N +1] = (1; 1; 0):
periments, the median packet length is computed for every sourcegz for k:=1 to (M + N) do

IP address and every one minute interval: 04 it (vi <vj)
05 S[K] == (Vi; Gis Ai + 05 + Aj i 1);
SELECT tb, sourcelP, median(lengthy FROM UDP o =1
! else if (vj <vj)
GROUP BY time/60 as tb, sourcelP 08 SIK = (vi:05: A5 + i + As i 1);
09 j+=1
Since UDP is a source data stream, this query will be broken into 10 else if (vi=v;)
a subaggregate and a superaggregate query by the query planner. i; |S+[k]:T (\Eijrgi:t_gj PO+ Af);
13 Sh:=S;

4. STREAMING ALGORITHMS
Figure 1: Merge Algorithm

4.1 Selection-based Quantiles

Greenwald and Khanna [24] proposed a novel data structure,
thequantile summarythat effectively maintains lower- and upper-
bounds on the ranks in (V) andrmax(Vv), respectively) for each ° ; ;
valuev from the input stream. Aften input values, the data struc- Sh(N) of N tuples. For Algorithm 1, the output is a simple ar-
ture S(n) consists of an ordered sequence of tuples which corre- @Y Of values, each of which is inserted irSia. For Algorithms 2

spond to a subset of the observations from the input stream; ini- @d 3, the LLQ output is a quantile summay = S-(m), of M
tially, S(n) is empty. Each tuplé; = (vi; gi; A;) consists of three tuples, and the update procedure is more involved. First, the algo-

components: (i) a value; that corresponds to an element in the rithm compresses tuples 8 that could have been compressed at
data stream; (ii) the valugs equalSrmin (Vi) i Fmin(Viz1); and the LLQ, if any. The_rﬁ- andS are _merge_d into e_lsmgle summary
(i) Aj equalsrmax(Vi) i rmin(Vi). By ensuring that the summary S = S(m_+ n), of sizeM + N during which theirA-values _(a_nd .
structureS (n) satisfies the propertyax; (gi + A;) = b2tnc, any Fhug maximum ranks) are adjugted; the pseudocode fOI"[hIS.IS given
~.quantile query can be answered to withim precision in rank, N Figure 1. After the merge, adjacent pairs of tugieandti1 in

To achieve this, the input stream is conceptually divided into buck- S for Which (gk +gk-+1 + Ak+1) = b2f(m + n)c are compressed

ets of widthw = die. Each valuev from the current bucket is ~ © reduce space. The resulting quantile sumniiy guaranteed
inserted intoS between tuples; ; 1 andt;, wherevi; 1 <V = vi, _to report quantiles with at mog{m + nl) rank error. Although
with valuesg = 1 andA = g; + A; j 1. Periodically, the spaceis It c@nnot guarantee a space bounddif; log f(m + n)), due to
compressed by merging adjacent pairs of tupjeandti; when- yvorst-case scenarios when merging _at the HLQ, our experiments
ever(gi - gi+1 + Aiy1) = b2fnc. Their analysis of this algorithm indicate that this bound tends to hold in practice.

showed a space bound O+ log(fm)). 4.2 Sketch-based Heavy Hitters

Implementation in Gigascope. We implemented three quantile Many different sketch methods have been proposed, for comput-
UDAF variants based on quantile summaries, which make use of ing frequency moments [3], count distinct queries [16], join size
the Gigascope processing hierarchy. These algorithms span a rangestimation [2, 14] and heavy hitters [8, 10]. We will focus on com-
from simple to complex preprocessing at the low level query, and puting the heavy hitters on streams of values and updated counts,
divide up the work between the low level query (LLQ) and high e.g., finding large flows grouped by source IP address with counts
level query (HLQ) in different amounts as follows. coming from packet sizes. The “count-min sketch” method de-
scribed in [10] gives a probabilistic approach to approximating the
count of any item, with an error proportional to the sum of the
counts of items. This can easily be incorporated into a scheme to
: find the heavy hitters (all items whose count exceed a threshold
processing. fraction of the total count) with a simple top-down search proce-
dure. For implementation in Gigascope, we will fix the parameters
of the sketch, which determine the size of the data structure, and
test how to divide the processing work between the low-level and
the high-level.

We now describe how the outp8t (n) from the LLQ is pro-
cessed at the HLQ, which maintains a quantile sumn8y=

Algorithm 1 (LLQ-lite). This algorithm does minimal work at the
LLQ, which is used for buffering the incoming tuples in an array
(ordered by arrival time) before being sent to the HLQ for batch

Algorithm 2 (LLQ-heavy). This algorithm maintains a linked list

of samples ordered by item values. After insertion, it reduces the
size by sweeping through it in a full compress phase. If the storage
space at the LLQ becomes full, it outputs the data structure (to be
sent to the HLQ using a FLUSHME call), discards the space, and

starts over with a new data structure. Implementation in Gigascope. Each sketch is implemented as

an array of countssk([1:::d;1:::w]. There arel different hash
Algorithm 3 (LLQ-medium). This algorithm attempts to find a functionsh; ::: hq which map item ids ontd1 ::: wg. Each new
“happy medium” between Algorithms 1 and 2. It trades off pro- packet will be interpreted as an update to the sketch, in a way de-
cessing at the LLQ for more at the HLQ but, whereas the processingtermined by the user query: for example, a query on Heavy Hit-
time for Algorithm 2 is linear in the number of tuples, this strat- ters for source IP addresses based on packet size means that each
egy does updates in logarithmic expected time by maintaining a packet will be interpreted as an update with=Source IP, and
skiplist directory of the tuples ordered by item values. Alsgit- val =packet size (in bytes). With each upddtiel; val), the sketch
tially compresses after each insertion by performing a local probe is updated bysk([i; h;i(id)]+=val for i = 1:::d. To estimate the
at where the new element is inserted as well as a probe at a randonsum of all values for onéd, we tgkemin; sk[i; hi(id)]. The error
location in the list; this is done in constant time. in the estimate is proportional to val=w, and the probability of

higher error is proportional ta*9. Two sketches with the same High Level Strategies
hi; w, andd can be sum_med, entry-_W|se, to make the sketch _Of the At the high level, we considered three different ways to use the
sum of.the streams. This property is needed by some of our imple- sketch routines.
mentations.

To find items with the highest counts, we keppketchesk(1); A. Low Sketch. This strategy is the partner routine for the Low
. 1; sk(g) of items at different levels of granularity (e.g., asketch ~ Sketch at the low-level, and keeps a sketsk at the high-level.
for ids, sketch fphid=2c, for bid=4c etc). Then the search for val- When the low-level is flushed and a sketsk’ is received from
ues greater than val=100 proceeds in a similar way to a binary ~ the low-level, we sesk(i)[j; k]+=sk’(i)[j; k] for all i; j; k: this
search. The space cost is proportionafte™we—d and the up- uses the property of summability of sketches.
date cost scales with~"d. There are tradeoffs between settings
of the sketch parameters: increasinggives better accuracy, but
uses more space; increasithgives fewer errors, but at the cost of
both update time and space; smaljagives faster updates but can
cause more errors and take more time to extract the results. We setC. Adaptive Sketch.For skewed or sparse data, the previous meth-
w = 256 giving an expected error factor of less than 1% in estimat- ods automatically allocate the space for sketching and return ap-
ing counts (choosing a power of two also makes the hash functions proximate results when it would be more space efficient to keep the
more efficient to compute), and skt= 2. We fixg = 3 by keeping exact data and return exact answers for some groups. The adap-
sketches of the full 32-bit items as well as 24- and 16-bit prefixes of tive approach is designed to smoothly adapt to the input distribu-
items. We also kept exact counts for the 256 8-bit prefixes, giving tion. Initially, it keeps exact results as a llstf (id; val) pairs, and
a total sketch size of 7KB. These parameter settings were made orwhen new update@d’; val®) are received from the low level, the
the basis of experimentation. In future work we plan to investigate list is searched fofid’; val). If found, we updatesal+=val’; if
the impact of other parameter settings, but such a comparison isnot found, we appen¢id’; val®) to the list. If the length of the list

B. Direct Sketch. The Direct Sketch strategy accepts an array
a[l:::p] from the low-level, and updates each sketch with each
(id; val) pair as described above.

beyond the scope of this paper. exceeds a set length, then a sketch is allocated, and the list is used
. to populate the sketch. The default for this threshold was set to 64
Low-level Query Strategies distinct values, and in experiments we compared to values of 128
Atthe low level, we considered four methods, in order of increasing and 256. For the skewed distributions seen in real data streams, we
complexity. may observe many thousands or even millions of observed pack-
ets before this manglistinct values are seen (see next section for
1. Buffer. The Buffer strategy simply keeps a 1KB arrayof guantitative results).

(id; val) pairs as they arrive and flushes the buffer after 128 val-

ues. If the buffer is flushed when it is partially full, then only the 5. EXPERIMENTAL ENVIRONMENT

occupied prefix of the array is passed up to the high-level.]]
To evaluate the performance of the approximate quantile and

2. Hash. The Hash strategy also uses an amayf (id; val) pairs, heavy hitter algorithms, we modified Gigascope to accept UDAFs,
but uses it as a hash table. When an updideval) arrives, we as described in Section 3.2, and incorporated the algorithms for the
test if alhash(id)] = id, and if so addval to the current count. streaming algorithms into the Gigascope library. For performance
If the slot is empty, then we pud in the slot, else we search testing, we used two data sources.

a[hash(id) + 1];alhash(id) + 2]::: for id or an empty slof. The first data source is an Agilent Technologies RouterTester

This can aggregate counts, and is expected to show improvements 0 Gigeth traffic generator [1]. Using it, we can generate about
over buffering for skewed data sources: by aggregating all inser- 1Gbit/sec of traffic on each of two Gigeth links. The traffic gen-
tions of a particular item, a single update is required at the high erator is not a sophisticated source of randomness. We could only
level, instead of many. vary the source IP address of the packet and the packet length, both
independently and uniformly random. The average packet length is
always 782 bytes, and when both Gigeth channels are driven at the
maximum rate they produce 310,000 packets/second.

3. Compress. A disadvantage of the Hash strategy is that if it
is flushed while being sparsely populated, then the whole table is
copied up to the high-level, whereas only a small amount needs

to be sent. Compress augments the hashing approach: when the We_' monitored the gendera;t(t-:'d s;resa(rgnhusmgtg modern but |nex;j
structure is flushed, if the count of non-zero entries is low then the PENSIVE SETVET COMPrISed oTtwo 2. Z pentium processors an

table is compacted by moving each entry to the first available free 4 Gbytes of memory. In this system, we configured Gigascope to
slot, and only the populated prefix afis copied up to the high report the number of packets dropped before they could be pre-

level. This does not affect the high level processing, and reducesSentecj to the low-level queries. In _addltlon, we are aIerted_ when
the memory transfer. packets sent from the low-level queries to the high-level queries are

dropped, but we could not collect precise statistics. For these ex-
4. Low Sketch. The most intensive low-level strategy computes a periments, aggregates are collected over 10 second intervals. When
sketchsk® at the low level. This requires the 7KB of space being measuring the CPU load, we collect the CPU time used by the pro-
allocated for each group, which may be a high overhead in terms of cesses over a 100 second interval.

space for large numbers of groups, and a bottleneck for transfers, The traffic generator provides a controlled environment for mea-
especially on epoch boundaries. suring CPU overhead, but it does not represent a realistic data source.
For an alternative data source, we monitor #p@n portof the

router which connects our institution to the internet, via a 100 Mbit/sec
fink (a span port mirrors all traffic for monitoring purposes). We
monitored this stream using an older single-cpu 733 Mhz pentium
with 128 Mbytes of RAM, which had been previously set up by the

2| the search exceeds 8 consecutive locations, then the routine re-network administrators. The experiments used the query in Sec-
quests a flush. tion 3.2 (varying the UDAF and using 5 minute intervals for the

A design feature for these experiments is that the output of the
first three strategies above are interchangeable, so we can compar
the effect of different choices at the low level with different choices
at the high level.

. . Cumulative Distribution
accuracy experiments). Each experiment ran for 1 hour.

Even though all experiments ran during normal business hours, | 1 {
the traffic on the link varied considerably from experiment to ex- | 0.9
periment, and even during experiments. Figure 2 shows the per- | 0.8
minute traffic volumes and number of groups for a high-volume |7
run. A typical low-volume run averaged about 400,000 packets per | ¢
minute (about 7,000 per second), while the high-volume run av- |, |
eraged about 1,110,000 packets per minute (about 18,000 per sec- —groups

ond). However the average number of groups per minute was 640 g': |
and 1260, respectively, exhibiting considerably less variation than |
the number of packets. As is evident from these statistics and from 02
the chart, the nature of the traffic changes very rapidly. 0.1 4 /
0 . ‘ | | ;
1 10 100 1000 10000 100000 100000
Packets and Groups per Minute packets per group 0
1800000 1600
1600000 - . . '.l —+ 1400
1400000 ._"._.'-"'-" L PR L 1200 Figure 3: Cumulative distribution of packets and groups.
1200000 - [] 1 1000
%ij 1000000 juﬁ\/\l\/\/\;l 1 800 %
& 8000004 1 600 5 A replacement policy. We found that using LRU caused too much
8000001 100 overhead, so we changed the replacement policy to direct mapped.
400000 In this policy, groups are mapped to a hash table without chaining.
200000 120 If there is a collision in the hash table, the old group is flushed to
0 0 make space for the new group.
fime We were not able to recover the LRU replacement policy to em-

pirically determine the actual overhead of LRU. However we did
notice that the direct mapped policy is likely to cause an excessive
number of cache invalidations due to hash table collisions. We im-
plemented a simple modification to the direct mapped policy, which
we term “second chance”. If on the first try there is a hash collision,
the replacement policy will rehash. If the second try also results in
a collision, the group in the first hash position is ejected.

We ran the following experiment using the traffic generator. We
created a simple aggregation query (collecting a COUNT, MIN and
MAX). We varied the number of groups (source IP addresses) in the
packet stream and decreased the number of cache slots in the low-
level query until we found the minimum cache size before packet
loss occurred. The results are in Table 1.

Figure 2: High traffic volume.

The distribution of tuples to groups is extremely skewed. A sam-
ple distribution of packets per group plotted on a log-log scale
shows a straight line, indicating a power law distribution. This
property is present in all of our data samples. These skewed distri-
butions have important implications for implementing fast UDAFs.
Most of the groups have only a few tuples, and can be represented
exactly by small, simple, and fast data structures. However, most

of the packets are processed in groups with a very large number of # active groupd direct mapped second chance
packets. This property can be clearly seen in Figure 3, which shows 3000 1900 1300

the cumulative distribution of the number of groups and the num- 5000 2300 3300

ber of packets against the packets per group. Using 1000 packets 10000 7300 2300

per group as the boundary between “small” and “large”, only 3% 50000 64000 19000

of the groups are large, but they process 92% of the packets. Other 70000 710000 74000
boundaries produce similar results.

6. LOW-LEVEL QUERY PERFORMANCE Table 1: Minimum cache size before packet loss.

A critical optimization in Gigascope is the splitting of aggrega-
tion queries into low-level subaggregation and high-level superag- The second chance policy is much more effective than the di-
gregation queries. Since the operation of the subaggregate queryrect mapped policy, especially when the working set of the source
has a very large impact on performance, in this section we examinestream becomes large. As the policy is simple, fast, and effective,
the subaggregation algorithms and their performance in detail. it is a good substitute for LRU. All of the remaining experiments
Subaggregation queries are evaluated using a fixed-size bufferin this paper were run using the second chance replacement pol-
to store groups and aggregate data (UDAFs for subaggregation usecy, and second chance replaced direct mapped in the production
fixed size scratchpad space in the group tuple, as malloc is depre-version of Gigascope.
cated for low-level queries). Because there are a limited number of As discussed in Section 3.1, aggregation in Gigascope divides
groups which can be in memory, the subaggregate query acts as arime into a sequence of epochs. At the end of each epoch, all groups
“aggregation cache”. are closed, converted to tuples (subject to a HAVING clause) and
One mechanism that we examined is the aggregate cache reflushed to the output. This point tends to be a performance bottle-
placement policy. Early versions of Gigascope had used an LRU neck, as a potentially large number of tuples are created and flushed

to an output stream (involving a lot of memory copies). For holistic Here we report experimental results using the three algorithms
UDAFs, the bottleneck becomes worse because of the processing talescribed in Section 4.1. We considered several parameters such as
finalize the aggregate (in the OUTPUT function) can be expensive. the scratchpad size at the low-level query (LLQ) (small, medium or
We had noticed this earlier, and implemented a lazy cache flush large).
policy for low-level queries (a similar policy was implemented for
high level queries, but an examination of it is beyond our scope). Performance Results. Using data from the traffic generator, the
When the epoch changes, all full hash table entries are labeled old.performance differences between the methods are most pronounced
When a tuple arrives in the new epoch, an old full hash table entry in the case of 100 groups (which is when the number of tuples
is flushed (if any). If the new group collides with an old hash table per group is largest). Here the default high-level query algorithm
entry, the old group is flushed. If the new group collides with a new (HLQ-only) drops too many packets to yield meaningful numbers.
hash table entry, all of the old entries must be flushed immediately, This was true in all our experiments. Hence, we do not report their
to preserve attribute timestampness in the output stream. results in this section. The performance of the remaining algo-
We were able to evaluate the effectiveness of the lazy flush policy rithms, including the “null” UDAF as a baseline, are summarized
because it is a simple matter to disable it (enforce eager flush). Wein Figure 4(a).
reused the aggregation query from the replacement policy experi- At the LLQ, Algorithm 1 was clearly the fastest in all cases, re-
ment. We then subscribed to an increasing number of these queriegardless of the scratchpad size, and was only marginally slower
(ensuring that the common subqueries were not shared) and meathan the “null” UDAF. Algorithm 2 was the slowest, almost twice
sured the packet loss rate at the low-level queries. We varied theas slow as Algorithm 3, for all scratchpad sizes. Recall from Sec-
number of groups, measured the loss rate and CPU utilization, andtion 4.1 that Algorithm 1 is the most lightweight at the low level,
report these values for the smallest number of groups for which followed by Algorithm 3, then Algorithm 2. Hence, this ranking in

packets were dropped. The results are in Table 2. performance is to be expected. This ordering was reversed at the
HLQ in all cases, with Algorithm 1 giving the slowest performance
loss loss | cpu followed by Algorithm 3, then Algorithm 2. Hence, we observe
groups | queries| (eager)| (lazy) | util that the choice of strategy at the low level (inversely) impacts the
50000 2 1.8 1 37 performance at the high level. This negative correlation is due to
25000 3 A 0 51 the data reduction from the quantile summaries employed at the
12000 5 5 3 30 LLQ by Algorithms 2 and 3: the more reduction, the fewer (and

smaller) the transfers from the low to the high level.
However, this trade-off may not be desirable when a large in-
Table 2: Packet loss rate for eager and lazy flush crease in processing cost at the LLQ buys only a modest decrease
at the HLQ. In a shared-processor system (which was the environ-
The lazy flush policy provides a small but significant reduction Ment for this experiment), the low-level queries are executed by
in the packet loss rate, especially when the number of groups isthe same processor(_s) as the high-level queries, a_n_d are therefore a
bottleneck. Hence, Figure 4(a) shows that the additional cost at the

large. The improvement can make the difference between an unac- S . .
ceptable and an acceptable packet loss rate. Since holistic UDAFs-LQ could only be justified for Algorithm 3 with the large scratch-

tend to have large state and expensive OUTPUT functions, theseP2d size; in all the other cases, the savings at the HLQ was more
effects are likely to occur with a smaller number of groups. thar_1 offset by the extra work at the LLQ. .
We note that the CPU utilization might be low (as low as 37%) Figure 4(b) summarizes the performance of the three algorithms

when packet drops occur. This fact indicates that the group flush USing the traffic generator with 10K groups. Once again, we ob-
at the end of the epoch is a bottleneck. The solution lies more in SErve the same ordering among the algorithms with respect to per-

scheduling and buffering than in reducing CPU costs. The schedu-formance at the LLQ, to varying degrees. In this instance, we see
lability of the queries improves significantly as the number of groups the p"’_‘VOﬁS of extra processing at the LLQ for the medium scratch-
decreases. If we wish to perform controlled load shedding to re- Pad size. Due to the larger number of groups (10K here versus 100

spond to handle overload conditions, it is better to sample groups :jn the pFEVIOrl]JS experiment), tlpere are more transfers, ,S(r)] dtha re-
rather than packets. uction can have a more significant impact. However, with a large

scratchpad size, the extra work at the LLQ for Algorithms 2 and
3 caused the processor to drop packets. In fact, for Algorithm 2

7. HOLISTIC UDAF PERFORMANCE there was so much loss that measurements could not be computed.

We evaluated different UDAF implementations of quantiles and While Algorithm 2 can be the best choice under certain conditions,
heavy hitters with respect to performance, space usage and accult is also the _riskiest. Algprithm 3 can provide benefits, with _Iarge
racy. The synthetic traffic generator was used for many experiments Scratchpad size and relatively small number of groups. Algorithm 1
to allow better control over the data characteristics. This generator Was the safest choice overall with respect to packet loss at the low
created uniformly distributed values for the grouping attribute (into €vel, but achieves the least amount of data reduction and is thus
either 100, 1K, or 10K groups) and, within each group, the number th€ least scalable at the high level. _
of distinct values for the attribute to be aggregated was varied (10, ~The traffic characteristics using the live TCP data varied so much
120 or 1436). For the remainder of the experiments, we used thebetyvgen experiments th.at comparisons are dlffICU|t.‘ The algorithms
live TCP traffic data. exhibited similar behavior to that with the synthetic data. Algo-

The goal is to run as many queries as possible on as high a datdithm 1 had the best performance at the LLQ (followed by Alg 3,
rate as possible without dropping packets. Our evaluation of the then Alg 2) and the worst performance at the HLQ; the per-tuple

algorithms is based on their schedulability with varying data char- Processing time is summarized in Table 3. Interestingly, the trade-
acteristics and server architectures. off for extra LLQ processing was beneficial here for Algorithm 2 as

it had the lowest total per-packet cost, making it the most scalable
7.1 Selection-based Quantiles in a single-CPU system. This data is highly skewed, even more

Quantile UDAF Performance (100 groups) Quantile UDAF Performance (10K groups)

140
120 A
9 32 100
g c
g O high N Ohigh
= Hlow 5 60 Hlow
=)
2 2 40
O O

20 4

Figure 4: Performance of quantile UDAF algorithms on data from traffic generator.

| [LLQ | HLQ [LLQ+HLQ | T
Algl | 1.70] 13.9 156 System Io?d, 10,030 gr(()jgp)tg,k)nwtgny distinct
Alg2 | 11.8 | .129 11.9 180 - values, uniform distribution
Alg3 | 6.67 | 9.87 16.5 % 150 - @ high-level usage —
Table 3: Average processing time per tuple (sec) using TCP & 120 - W low-level usage
data. Four UDAFs in query. > 901
S 60
(&)
¥ 30
) 0 -
so than the data from the traffic generator. Therefore, a very small N O o s o«
fraction of the groups dominate the transfer costs. For these groups, 0\3\ ~@,0\ ber \@0 SZ’Q ‘&5‘ b’Z’Q 6'Z’Q é‘\c}(‘
it pays to expend the effort to aggregate using quantile summaries \\;\\b\ \s\\'b \Q@ N4 ,\\\ N4 ,g‘b \&l‘
so as to delay transfers because these groups are active and unlikely AN \({z? s(\’b% oé‘Q OéQ & N9

to be flushed before becoming full.

Space UsageAs we mentioned in Section 4.2, Algorithms 2 and 3

do not provide as tight a worst-case space bound for the HLQ quan-
tile summary as Algorithm 1 does, due to merging. However, in all
our experiments the space usage was comparable for the three al-
gorithms and far less pessimistic than the worst case. In fact, whenicipaq. The experiment shown in Figure 5 show the effect of a
we looked at this ratio on a per-group basis, the size of the quan- 5rge number of groups, and a large number of values. We compare
tile summary appeared to be independent of the number of stream 1o cost of the “null” UDAF, which merely computes the sum of
tuples in the group. This is consistent with the observation in [24] | 51es seen, to show that most strategies at the low-level do not add
that, for values arriving in a random order, the space depends only ., \ch to the cost of using Gigascope.

ontand not on the number of stream tuples, despite the logarithmic ¢ first conclusion of these experiments is that the two extremes
dependence in the worst-case bound. both give bad results: the default approach of running the query

_ ; solely at the high level or solely at the low level is a bad solution.
7.2 Sketch-based Heavy Hitters We observed that trying to run the query completely in the high

We ran a series of experiments to determine the cost of using level, or using the low sketch strategy both c_aused a significant
sketches, under the same experimental setups as for the selectiofUMber of packet drops, whereas the intermediate approaches have

based methods. We looked at the effect of combinations of the N drops atall. Because the high-level approach is so costly at both
the high and low level (causing 100% CPU usage for the processor

different strategies proposed above, and the effect of higher system
dies prop g Y at the low-level) and causes so many packet drops, we do not ex-

load, modeled by varying the number of active groups. We also .
looked at the cost in terms of space, and the accuracy attainableP!0re it further. The low sketch strategy also caused many packet

using these approaches. These experiments also show that sketch&f0ps and put the heaviest strain on the low level system, in this
can be practical on network streams at network line speeds. and all other experiments. Since the low-level query system tends

to be a bottleneck, this behavior is undesirable.

Performance Results. The first set of results are shown in Fig- This leads us to conclude that the best performance will come
ure 5, which shows an experiment on traffic generated by the traffic from picking a combination of buffer, hash, or compress at the low
generator described above. We looked at all the combinations of level, and direct or adaptive sketching on the high level. We con-
low-level and high-level strategies possible on the dual processor centrate on these methods for the remainder of the analysis. The

Figure 5: Sketch performance on uniform generated traffic

data generated for the plot in Figure 5 had a large number of unique

This experience leads us to focus in on these six strategies (pair-

values, meaning that it would likely cause the adaptive sketching ing the three low-level strategies with the two high-level strate-
approach to create a sketch very quickly, and indeed it can be seergies), and experiment on real data. The timing results shown in

that the high-level costs of all strategies are similar, with a slight

Figure 7 show again that the hash and compress strategies are to

disadvantage to the adaptive approach, since it must create and popbe preferred. Note that it is harder to cross-compare between re-
ulate a sketch part-way through the test. There is also little differ- sults in these experiments, since we cannot “record and replay”

ence between the low level strategies, since all keep a 1KB buffer,
which on this traffic distribution will all fill at approximately the
same rate: the buffer approach has a slight advantage here since i
has lower processing costs to get the same effect as the compres
and hash methods.

System load for sketching, 10,000 Groups, few
distinct values, uniform traffic

60

m low-level usage @ high-level usage

(0]
(@]
® 40 |
)
z
O 20 -
*
0,
NS X . X N X X NS
& K& F R
I R SN
& & S & &
0 Y & @ 0((\ 0@ NQ

Figure 6: Sketch performance on skewed generated traffic

In practice, we have already noted that network data displays a
strongly skewed distribution, and it is on such data (see Figure 6),
that one can distinguish between the high level methods. Although
there is little difference at the low level for the different strategies,
the choice of strategy at the low level does have an impact on the
cost at the high level: buffering causes more work than hashing,
which is more expensive than compressing the hash table. Interest

real traffic streams. On the same data, the cost of hash/direct and
hash/adaptive should be the same at the low level, but fluctuations
in the stream we were monitoring affected the distributions. Nev-
srtheless, we can conclude that there are apparent benefits to the
adaptive strategy, where the total cost is less than the correspond-
ing direct version, and that trying to do aggregation work at the
low level can bring significant reductions in cost at the high level.
Overall, the combination of strategies that works best at both levels
is when the right balance is struck between amount of work done,
and the cost of doing that work. We recorded no packet drops with
these methods, even though they were running on a less powerful
system. On a more modern processor, the times scale to a cost of
around a hundred nanoseconds per packet.

System Load with increasing number of groups
(few distinct values, uniform distribution)

60 -
g O high-level usage
© -
8 40 | | @ low-level usage
.
G 20
B
0 -
o o | o | o o | o | © o | o | o o | ©
o o | o | o o | O | O o | o | o o | ©
0Ol O|lO | |O| O |+ |0O|OC
~— o ~— o ~— o -~ o
buf/adapt | hash/adapt | cmpr/adapt| low sketch
Number of groups

Figure 8: CPU usage with number of groups

ingly, the best performance is achieved by the adaptive approach
combined with compressing the hash table, where the cost at theggact of Number of Groups. Figure 8 shows how the cost of the

high level is negligible. For other strategies, the adaptive approach
is a little more expensive than the direct approach, but this is to be

weighed against the potential space savings and accuracy improvesg, 5 given low-level strategy

ments from the adaptive approach.

Processing time for real data
(10,000 block LFTA buffer)

| low-level time O high-level time

Figure 7: Average processing time on real traffic stream (four
UDAFs)

methods scale as the number of groups increases. We show only
the low sketch and adaptive strategy: on this data set, we found that
the same cost was virtually identi-
cal for the direct and adaptive strategies, so we plot only the latter
for clarity. We see that the buffering and hashing approach seem
to scale logarithmically with the number of groups. The compress
strategy is almost the same as the similar hash strategy until the
number of groups becomes large, at which point there are clear ad-
vantages to compressing. Once again, attempting to push too much
computation down to the low level, in the form of the low sketch
approach, is uniformly the most costly, by a significant margin. But
doing some processing at the low level, by hashing, or hashing and
compressing, shows moderate but noticeable improvements.

Parameters of the Adaptive Sketch Method.We experimented

with when to switch from keeping exact counts of items to making

a sketch in the adaptive strategy. In Figure 9, we again see a clear
correlation with log of the number of groups for sketching after 64
(the default) and 128 distinct values. For 256 values, the cost seems
to grow more quickly, reflecting the additional cost of converting
the list of exact values to a sketch once the threshold of 256 values
is exceeded. On the other hand, there are definite space advantages
of choosing a larger value, since the size of a sketch (7KB) is much
higher than the cost of each item (8 bytes for each (item, count)

System load, adaptive sketch strategies Accuracy of Sketching Strategies
80 71 mhighlevel
o 80% - ; —
2.0 1 Elowlevel ° O Adaptive Sketch
b .
3 .0] 60% m Direct Sketch
>
S 20 - 40% -
2
01 20% 1
0% +
Sketch after 64 | Sketch after 128 | Sketch after 256 Correct Off byone Off more Missed
distinct values | distinct values | distinct values than one
Number of groups

Figure 9: Varying when to sketch for adaptive strategy Figure 11: Accuracy for sketches on uniform traffic

threshold is not exceeded and so no sketch is made then exact re-
sults are kept and so the results there will be correct. This reduces
\ the fraction of misses from 18% to 14%. Further improvements

Space usage on different data types

(o]
]

Average bytes / packel
N BN

to the accuracy can be made by increasing the size of the sketch.

We would also expect the results to be much more accurate on real

data: the synthetic data here is generated uniformly, which is the

most challenging case for approximate methods, since all values

\ have counts which are similar, making finding the heavy hitters
harder than on a more realistic skewed distribution.

0 — : '
0 64 128 192 256 8. CONCLUSIONS
Distinct values before sketch In this paper, we examined the problem of integrating stream-

ing algorithms for holistic aggregates into a DSMS. We modified
the Gigascope system to recognize UDAFs, and incorporated al-
gorithms for computing approximate quantiles and heavy hitters.
When we tested these algorithms, the best versions ran comfortably
Figure 10: Space cost for adaptive strategy on a 2 Gbit/sec input stream under challenging conditions, leading
us to conclude that the algorithms can be used to monitor OC48
links. Our UDAFs for quantiles and heavy hitters have been incor-
pair). This is shown in Figure 10, where increasing the threshold porated into the Gigascope library and are being used in production
before sketching reduces the average number of bytes per packesystems.
processed. This is especially clear when the data being analyzed Achieving high performance required a significant amount of de-
is drawn from a larger range (say, IP addresses rather than portsign, testing, and research. The default implementation, in which
numbers): here, there is more chance of creating a sketch giventhe UDAF is fed tuples derived from the source stream, had un-
a lower threshold, and hence the average cost is higher the moreacceptably bad performance. Another complicating factor is the
quickly a sketch is made. extreme skew in network data. Most groups are small, containing
only a few tuples, but most tuples are contained in large groups.

Accuracy Results.We must also ensure that the results of keeping L arge-space UDAFs (such as sketches) will have unacceptably large
sketches actually answer the queries with reasonable accuracy. For, ge-sp) ptably ‘arg

- . space overheads due to the small groups, while exact algorithms
our heavy hitters queries, we were able to compute the exact an-

swers to the queries when using the traffic generator, and compared’vIII have ur_lacceptably Iarge_space overh_eads due _to th_e large groups.
. :) We applied a set of techniques to achieve practical implementa-
them to the output of the sketching strategies. We queried the sys-. . :)
i . . . : S tions, which may be summarized as:
tem to find the top five heavy hitters in various distributions, and
compared the exact top five with the top five found using sketch- 1. Break the UDAF processing into a simple, fast low-level sub-

—— Small Range — Large Range

ing. Then we computed the proportion of approximate answers aggregate which runs close to the data stream, and a high-
that were (a) correct, e.g., the top approximate heavy hitter was level superaggregate which computes the desired result. The
the true top heavy hitter; (b) off by one, e.g., the third heavy hit- subaggregation/superaggregation approach allows us to write
ter was ranked second or fourth by the sketch method; (c) off by fast code that does not deal with the complexities of han-
more than one, so a heavy hitter was returned by the sketch method dling large data (integer arithmetic, compact and therefore
but its rank was further off; or (d) missed, e.g., the fifth heavy hit- cacheable data structures, no mallocs, etc.). We also found
ter was not returned by the sketch method. The results are shown that running a data reduction query close to the data source
for the adaptive strategy and direct strategy in Figure 11 (note that to be critical for performance. In many situations, such as
the low-level strategy is irrelevant here, since the sketch computed code running in routers or in NICs, the low-level query sys-
is the same whichever low-level strategy is employed). Here we tem might not have the resources to do more than compute

see another advantage of the adaptive strategy: in cases where the simple subaggregates.

2. The subaggregate/superaggregate split gives us considerabléng the evaluation plan. For example, computing heavy hitters is
flexibility in devising UDAF algorithms. We found that we much faster on a pre-aggregated data stream. Our best heavy hit-
need to experiment to find the best combination of algorithms ters UDAF in fact does limited pre-aggregation. Depending on the
for a particular architecture. Factors include the streaming data characteristics, there might be a collection of possible algo-
rate, data skew, and characteristics of the architecture (e.g.,rithms. Choosing the evaluation algorithm then becomes part of
whether the sub and superaggregates run on shared or sepaguery optimization.
rate processors). We note that its also possible to decompose holistic aggregates

into more than two levels. For example, we might want to com-

pute heavy hitters from the traffic flowing through a collection of
routers. We need to combine the aggregate data from each router,
which itself is computed using a subaggregate/superaggregate UDAF.

The query planner needs to set up and optimize this query in a way

that is transparent to the user.

3. The properties of the data stream might dictate the choice of
best algorithm, requiring adaptivity for good performance.
Our live IP data stream showed large variations in its be-
havior, particularly in the extremely skewed distribution of
tuples to groups. By writing an adaptive sketch algorithm for
the heavy hitters UDAF, we overcame space use problems as-
sociated with sketch-based algorithms. When properly used, 9. REFERENCES

sketches are a very effective technique in practice. [1] Agilent Technologies. RouterTester.

4. The performance-limiting bottleneck for aggregation in Gi- http://advanced.comms.agilent.com/RouterTester/.
gascope occurs when aggregates are flushed at epoch bound-[2] N. Alon, P. Gibbons, Y. Matias, and M. Szegedy. Tracking
aries. This problem is significant even with simple aggre- join and self-join sizes in limited storage. Rroc. ACM
gates, and holistic UDAFs can require expensive OUTPUT PODS Conf.pages 10-20, 1999.

functions and large data copies to transfer state. While Gi- [3] N. Alon, Y. Matias, and M. Szegedy. The space complexity
gascope ameliorates this problem to some degree by using a of approximating the frequency momentsRroc. ACM

lazy flush at epoch boundaries, it is still the point at which STOG pages 20-29, 1996. Journal versioddaurnal of
a lot of work is required in a short amount of time. We can Computer and System Sciencg8:137-147, 1999.
improve the schedulability of UDAFs by keeping the state [4] A, Arasu and et al. STREAM: The Stanford stream data
small, especially at the low-level queries, and by taking steps, managerlEEE Data Engineering Bulletir26(1):19-26,
possibly proactive ones, to ensure that the OUTPUT function 2003.
is fast. [5] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
We observe that it is crucial for UDAFs to adapt their resource Models and issues in data stream system®rbat. ACM
consumption to the stream they encounter. Selection-based meth- PODS pages 1-16, 2002.
ods have this behavior inherent in their operation, but for sketch- [6] D. Carney and et al. Monitoring streams - a new class of data
based methods, we had to engineer this property. It was also nec- management applications. Broc VLDB pages 215-226,
essary to find the right division of work between the low level and 2002.
the high level. For the quantile UDAF, the best approach was usu- [7] S. Chandrasekaran and et al. TelegraphCQ: Continuous
ally, but not always, to do a small amount of aggregation at the dataflow procesing for an uncertain world.RProc. CIDR
low level. For the heavy hitters UDAF, trying to do all the work 2003.

at either one of the high level or low level alone caused unaccept- [8] M. Charikar, K. Chen, and M. Farach-Colton. Finding
able packet drops. The skewed nature of real data meant that doing frequent items in data streams.Rmoc. ICALP, pages

some simple hash-table aggregation of data was sufficiently power- 693-703, 2002.

ful to reduce the cost of computing the sketch at the high level, but [9] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan.
sufficiently inexpensive not to strain the low level system. Com- Comparing data streams using Hamming norm&oc.
bining these techniques has given the first successful application of Intl. Conf. VLDB pages 335-345, 2002.

sketching methods to real-time high speed network data. [10] G. Cormode and S. Muthukrishnan. Improved data stream

Computing approximations to holistic aggregates by incorporat-
ing UDAFs into a data stream management system provides us with
great amount of flexibility in writing and expressing queries. We
can write ad-hoc queries, and the output streams can be used fo
many purposes. For example, it is a simple matter to write a query : o L .
which computes the heavy hitters among the median packet lengths Glgagcope. high performance network monitoring with an
in packets from all source IP addresses, by chaining together two SQL interface. IrProc. ACM SIGMODpage 262, 2002.
queries. The UDAF specification language that we developed al- [12] C'_ Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
lows us additional flexibility, because the return value of an aggre- Gigascope: A stream database for network applications. In
gate can be the UDAF state itself. For example, we can compute Proc. ACM SIGMODpages 647-651, 2003.

sketches on two data streams, join them, and compute a changdl3] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
detection function on the joined stream. The Gigascope stream databd&#&E Data Engineering

Bulletin, 26(1): pages 27-32, 2003.

Future Directions. A curious aspect of our approach is that we [14] A. Dobra, M. Garofalakis, J. E. Gehrke, and R. Rastogi.
break holistic aggregates, which are supposed to be indecompos- ~ Processing complex aggregate queries over data streams. In
able, into sub and superaggregates. This approach is effective be- ~ Proc. ACM SIGMODpages 61-72, 2002.
cause we are computirapproximationgo the holistic aggregates [15] P. Domingos and G. Hulten. Mining high-speed data streams.
— and these approximations are “algebraic”. In Proc. KDD, 2000.

The decomposition of approximate holistic aggregates opens a[16] P. Flajolet and G. N. Martin. Probabilistic counting
new direction in query optimization. One direction is that of choos- algorithms for database applicatiod€£S$31:182—-209,

summary: The count-min sketch and its applications. In
Proc. Latin American Informatics (LATIN2003. Journal

. version to appear in Journal of Algorithms.

[11] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.

1985.

[17] M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and
mining data streams: You only get one lookRroc. ACM
SIGMOD, 2002.

[18] J. Gehrke, F. Korn, and D. Srivastava. On computing
correlated aggregates over continual data streando
ACM SIGMOD Conf.pages 13-24, 2001.

[19] P. Gibbons. Distinct sampling for highly-accurate answers to
distinct value queries and event reportsPhoc. VLDB
pages 541-550, 2001.

[20] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental
maintenance of approximate histogramsPhoc. Intl. Conf.
VLDB, pages 466—475, 1998.

[21] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.

Surfing wavelets on streams: One-pass summaries for

approximate aggregate queriesAroc. Intl. Conf. VLDB

pages 79-88, 2001.

A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.

How to summarize the universe: Dynamic maintenance of

quantiles. InProc. Intl. Conf. VLDB pages 454—465, 2002.

J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data

cube: a relational aggregation operator generalizing

group-by, cross-tab, and sub-totalsAroc. of the 12th Intl.

Conf. on Data Engineeringpages 152—-159, 1996.

M. Greenwald and S. Khanna. Space-efficient online

computation of quantile summariesCM SIGMOD Record

30(2):58-66, 2001.

[25] S. Guha, N. Koudas, and K. Shim. Data-streams and
histograms. IrProc. ACM Symp. on Theory of Computing
pages 471-475, 2001.

[26] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. Rroc. FOCS pages 359366,
2000.

[27] ISO DBL LHR-004 and ANSI X3H2-95-364. (ISO/ANSI
Working Draft) Database Language SQL3.

[28] R. Karp, C. Papadimitriou, and S. Shenker. A simple
algorithm for finding frequent elements in sets and bags.
ACM TODS 2003.

[29] N. Koudas and D. Srivastava. Data stream query processing:
A tutorial. In Proc. VLDB page 1149, 2003.

[30] A. Lerner and D. Shasha. The virtues and challenges of ad
hoc + streams querying in finand@ata Engineering
Bulletin, 26(1):49-56, 2003.

[31] S. Madden and M. Franklin. Fjording the stream: An
architecture for queries over streaming sensor datBrdo.
IEEE ICDE Conf, 2002.

[32] G. Manku and R. Motwani. Approximate frequency counts
over data streams. IAroc. VLDB pages 346-357, 2002.

[33] G. Manku, S. Rajagopalan, and B. Lindsay. Approximate

medians and other quantiles in one pass and with limited

memory. InProceedings ACM SIGMO[pages 426-435,

1998.

S. Muthukrishnan. Data streams: Algorithms and

applications. IPACM-SIAM Symp. Discrete Algorithms

http://athos.rutgers.edu/

>»>muthu/stream-1-1.ps , 2003.

Stanford stream data manager.

http://www-db.stanford.edu/stream/sqgr ,

2003. J. Widom anet al.

[36] M. Sullivan and A. Heybey. Tribeca: A system for managing
large databases of network traffic.Pmoc. USENIX

(22]

(23]

(24]

(34]

(35]

Technical Conf.1998.

[37] N. Thaper, P. Indyk, S. Guha, and N. Koudas. Dynamic
multidimensional histograms. Rroc. ACM SIGMODpages
359-366, 2002.

[38] H. Wang and C. Zaniolo. ATLaS: A native extension of SQL
for data mining. InSIAM Intl. Conf. Data Mining2003.

