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ABSTRACT

To answer user queries efficiently, a stream management
system must handle continuous, high-volume, possibly noisy,
and time-varying data streams. One major research area
in stream management seeks to allocate resources (such as
network bandwidth and memory) to query plans, either to
minimize resource usage under a precision requirement, or
to mazimize precision of results under resource constraints.
To date, many solutions have been proposed; however, most
solutions are ad hoc with hard-coded heuristics to generate
query plans. In contrast, we perceive stream resource man-
agement as fundamentally a filtering problem, in which the
objective is to filter out as much data as possible to conserve
resources, provided that the precision standards can be met.
We select the Kalman Filter as a general and adaptive fil-
tering solution for conserving resources. The Kalman Filter
has the ability to adapt to various stream characteristics,
sensor noise, and time variance. Furthermore, we realize a
significant performance boost by switching from traditional
methods of caching static data (which can soon become stale)
to our method of caching dynamic procedures that can predict
data reliably at the server without the clients’ involvement.
In this work we focus on minimization of communication
overhead for both synthetic and real-world streams. Through
ecxamples and empirical studies, we demonstrate the fleribil-
ity and effectiveness of using the Kalman Filter as a solution
for managing trade-offs between precision of results and re-
sources in satisfying stream queries.

1. INTRODUCTION

In a Data Stream Management System (DSMS), sensors
deliver continuous, high-volume, possibly noisy, and time-
varying streams to a central server [5, 16, 21]. Efficient re-
source management is critical for a DSMS to achieve high-
throughput performance. To conserve resources—network
bandwidth, storage, and CPU—many recent papers [1, 2, 6,
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13, 23, 30] propose methods to reduce the amount of data
delivered to the server. If the server can answer queries
within specified precision constraints, these methods do not
enact data communication. Indeed, these methods have
been shown effective for reducing network-bandwidth con-
sumption, thereby also conserving the storage and process-
ing loads at the server.

A major shortcoming of the existing solutions, however,
is that they are often ad hoc, as explained in [2], and have
been highly application-dependent. No unified solution has
yet been developed for managing stream resources. In this
paper, we treat stream resource management as fundamen-
tally a filtering problem. An effective stream-filtering algo-
rithm should filter out a maximum amount of data as long
as the precision constraints are met at the server.

We introduce our Dual Kalman Filter (DKF) architecture
as a general and adaptive solution to the stream-resource-
management problem. We advocate the use of the Kalman
Filter (KF) [18] for stream-filtering, since KF has been well
studied and widely applied to many data filtering and smooth-
ing problems. Specifically, we incorporate the Kalman Filter
as the basic building block of a stream management system
for the following two reasons:

e Traditional methods cache static data that easily be-
come stale over time. This necessitates frequent and
expensive synchronization between clients and servers
through retransmission. Our method, on the other
hand, caches filter parameters that enable dynamic
and accurate system prediction on the server without
clients’ intervention.

e As will be fully explained in Section 3.2, the Kalman
Filter can be easily customized to handle varying stream
characteristics, sensor noise, and time variance to meet
the requirements specified in [21]. The same filtering
framework can be adapted to address a wide variety
of stream resource management problems, providing a
unified paradigm that is both powerful and versatile.

In this paper, due to the space limitations, we focus on
showing the use of the KF to conserve network bandwidth
(and hence the storage and processing resources at the server).
To further emphasize the need to conserve network band-
width, let us consider a typical wireless sensor monitoring
system. In applications such as moving-object tracking,
weather monitoring, and video surveillance, the power dis-
sipation rate of a wireless sensor-node is an issue of primary
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Figure 1: The DKF model

concern. It has been established [28, 35] that the major-
ity of power dissipation occurs when transmitting bits over
wireless networks, not when processing them. The ratio of
energy spent in sending one bit over networks to that spent
in executing one instruction is between 220 to 2,900 on var-
ious architectures [26, 27]. Thus, filtering data at sensors
is beneficial not only for conserving bandwidth, but also for
conserving power. Since the computational cost incurred by
KF is insignificant in many practical sensing scenarios, KF
is an attractive option as the filtering solution for resource
conservation.

Figure 1 depicts the role of our proposed DKF model in
a typical DSMS architecture. A user (on the left-hand side
of the figure) issues a query to the server with some preci-
sion constraints. The server activates a KF, denoted as KFg,
and at the same time, the target sensor activates a mirror
KF with the same parameters, denoted as KF,,. The dual
filters KF; and KF,, predict future data values. Only when
the filter at the remote source, KF,,, fails to predict future
data within the precision constraint (and thus KF, cannot
provide an accurate prediction at the server) that the sensor
sends updates to KF;. Significant bandwidth conservation
can be achieved if a reliable and accurate data prediction
mechanism is employed. We propose the KF as such a mech-
anism for its simplicity, efficiency, and provable optimality
under fairly general conditions.

1.1 What is Kalman Filter?

The Kalman Filter is a stochastic, recursive data filtering
algorithm. It has been widely used in predicting a system’s
internal state based on the observation of its external be-
havior. For stream management applications, a stream is
modeled as a generative process (a streaming model) con-
trolled by the stream’s internal parameters (state), which
evolve over time. The state may or may not be directly
observable, and hence, has to be inferred by observing the
system’s external behavior. The observed data stream serves
as the external observation that is used to estimate the in-
ternal state of the stream’s generative process. The state es-
timation process operates using recursive steps of prediction
(propagating the internal state of the system) and correc-
tion (fine-tuning the prediction with external observation)
[10, 18, 32].

A concrete example is the problem of estimating the state
of a moving vehicle. The system state comprises the current
location and velocity of the vehicle, and is represented by a
vector &, at a discrete time step k. The system evolves over

time due to the driver’s acceleration and braking actions,
and road friction of a random. Hence, the time evolution of
the system’s state is governed by the equation

Trt1 = Axr + Bag + Wk

I=lo T]1E ]+ ]

where wy, is process noise, matrices A and B relate the state
at k to that at k+1, ay, is the time-varying acceleration, cy, is
the velocity, and T is the time between step k£ and step £+ 1.
Now, suppose at discrete time intervals we can measure the
position p. Then our measurement at time & can be denoted
as
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where v}, is the measurement noise inherent in all measure-
ment processes.

Given hints on the system state through the state prop-
agation and external observation mechanisms, the KF in-
tegrates all the information to arrive at the best estimate
of the system state over time. The KF weighs all available
information by taking into consideration the noise in exter-
nal measurement and the uncertainty in state propagation.
More specifically, let us assume that the state propagation
uncertainty wr is white Gaussian with a covariance matrix
Q. The measurement noise vy is white Gaussian with a co-
variance matrix R, and it is not correlated with the noise
in state propagation. The formulation of the KF algorithm
provides us with the following statistical properties:

2k =Pk + Vi

1. The expected value of the KF estimate is equal to the
expected value of the state. That is, on average, the
estimate of the state will equal the true state. Or the
KF is an unbiased estimator.

2. Of all linear estimation algorithms, the KF algorithm
minimizes the variance of the square of the estimation
error. That is, on average, it gives the smallest pos-
sible variance in estimation error. Or the KF is the
linear estimator that can deliver the most consistent
estimation results.

Continuing with our example of tracking a vehicle as it
moves in a two-dimensional space, the vehicle might be able
to provide rapid updates of its position to the central server
as it moves (e.g., if it is equipped with a GPS positioning
system). An inherent limitation is that the exact object lo-
cation cannot be updated continuously due to the limited



bandwidth and battery power of the remote devices. Thus,
approximate answers to the queries of the vehicle’s posi-
tion are acceptable. A promising solution is to maintain a
precision bound width § at the remote source and update
the server whenever the true value deviates more than §
units from the server value as proposed in [23, 25]. We use
our dual Kalman Filter approach to accomplish this (system
equations are discussed in detail in Section 4).

Again, let us use the schematic diagram in Figure 1 to
explain. Suppose a user query comes with a precision con-
straint . Our system will activate a Kalman Filter KF, at
the central server and its mirror Kalman Filter KF,, at the
remote site. The remote source keeps track of the server
prediction at time step k (note that this does not require
any extra memory except for the usual matrices of the KF)
and filters out the data (does not forward it to the central
server) if the prediction at the central server deviates by
less than a margin of §. Notice that KF;, after receiving
the first few measurements from the remote source, would
have established a good estimate of the state vector (pg, c).
Based on that, the server can compute the rate of change of
the X and Y locations using Eq 1, and would require fewer
updates from the remote source. Updates are needed only
when sudden acceleration or braking actions induce a large
error in the state estimate, or when noise gradually corrupts
the state prediction to such a degree that a refresh is neces-
sary. For tracking and recreating a vehicle’s locations, the
server does not need to record any information other than
the X and Y coordinates of the vehicle and the Kalman
Filter matrices.

1.2 Contribution Summary

In addition to perceiving and formulating stream resource

management as fundamentally a filtering problem, and propos-

ing using the Kalman Filter as a general and adaptive solu-
tion, the specific contributions of this paper are as follows:

1. We present a comparative analysis of our model versus
the existing techniques and discuss different applica-
tions where the Kalman Filter has been successfully
incorporated (Section 2).

2. We present the mathematic formulation of the filter
and discuss how the filter formulation can be easily
customized for a large variety of problem formulations
in stream management. (Section 3).

3. We propose our dual Kalman Filter model (in Sec-
tion 3.1) and discuss how constraints (query precision
and smoothing factors) provided by the user are used
to install and set initial parameters for the Kalman
Filters.

4. Through examples and empirical studies (in Sections 4
and 5), we show that employing the Kalman Filter
can facilitate and support different query scenarios. In
terms of bandwidth conservation, the Kalman Filter is
at least as good as traditional approaches, if not better.
More important, its generality and adaptivity show
promise as a building block for stream applications
that concern fusion and integration.

5. In Section 6 we advance a set of promising extensions
to build upon this work.

2. RELATED WORK

Algorithms in data streams have received increased atten-
tion over the past two years. A comprehensive survey of the
issues in data streams is presented in [5, 16]. Major research
directions include conserving computational and communi-
cation resources [1, 23], optimal storage algorithms, stream
mining [36], query optimizers [5], and query solvers [17].
Data streams have also been treated as time series, and
ideas from control theory were borrowed for the purposes
of approximation [11] and mining [36].

Resource management in data streams is of prime concern
due to their unbounded, continuous, and time-varying data-
arrival characteristics. Furthermore, memory and communi-
cation resources form bottlenecks in a stream management
system’s performance as they are affected adversely by the
above stated properties of data streams. There has been
a considerable amount of research work in the direction of
memory management for processing data stream queries [3,
7, 4], where the objective is to answer a given query using a
minimum amount of memory under the given constraint of
precision or characterize the memory requirements for the
query.

Research work proposed in [23] (STREAM project [2])
provides an insight into the distributed-sources data stream-
ing problem where adaptive filters are installed at each re-
mote source updating a central server. The goal is to achieve
maximum precision given the constraint of network band-
width. The server caches the latest data received from the
sensor until a new value is received. The caching model,
though effective, is not adaptive to the characteristics of the
input stream attribute values. For example, if a streaming
attribute value shows a continuous ascending/descending
linear trend over a span of time, this model would generate
a high number of updates. This is because new precision
bounds are not adjusted adaptively (based on time-varying
characteristics) each time a streaming attribute value comes
out of its precision bound, thereby increasing the probability
of future updates. We propose a general and flezible model
in which the server would predict the future values based
on the current trend in the input value. So if the streaming
values exhibit a linear trend, the Kalman Filter, after a few
updates, would predict values based on the slope of the lin-
ear curve. We characterize the streaming model using state
equations in order to save more bandwidth by predicting its
behavior.

The problem of reducing network traffic can also be real-
ized in terms of load shedding, where data tuples are dropped
from the system when the load (total volume of data) in-
creases to an extent that it cannot be processed completely.
This problem has been studied in [30] (AURORA project
[1]). The load at each boz in the network is maintained,
and drop operators are installed if the load reaches a thresh-
old. The load is reduced by altering the sampling tech-
nique, changing the sampling rate or modifying selectivity
criterion. We note that load shedding is not the solution
to effective resource management, as it drop chunks of data
from the input stream independent of the stream data ar-
rival characteristics. The problem that this system solves
is different from ours, since it tries to stream maximum up-
dates for a given network load whereas our solution aims
to stream minimum updates so that precision constraint is
satisfied at all times.

Another approach for reducing communication overhead



[ System | Proposed Solution | Pros of using Kalman Filter |

STREAM | Adaptive precision bounds, approx. value cached | Prediction algorithm can be used reduce com-
at server,does not work for noisy data (no data | munication overhead even further, on-line
smoothing), dynamic precision widths are cached | data smoothing helps to provide query an-
at the server, best estimate for future is the last | swers even for noisy data
cached value at the main server

AURORA | Static precision widths, resource management us- | Prediction mechanism is based on input char-
ing dynamic sampling rates based on loss/gain ra- | acteristics, output is sensitive to input values
tios, bounds do not change with input characteris-
tics of the stream

COUGAR | Partial query processing in the wireless network to | Prediction scheme gives better results, re-
prevent unnecessary data being forwarded (load | ducing load adaptively rather than dropping
shedding). Does not use any approximation or | chunks of data indiscriminately
caching scheme

Table 1: Summary of existing solutions and advantages of using the Kalman Filter

has been proposed in the Cornell University COUGAR project

method. We now introduce the mathematic notations com-

[35]. An in-network aggregation scheme is used to perform
partial aggregation of results at some intermediary node in
the sensor network that prevents unnecessary data from
being forwarded further ahead. The Telegraph adaptive
dataflow system [12] is more focused on common sharing of
resources for different queries, than on the trade-off between
performance and resources.

A comparative overview of our work with three major
data stream projects is presented in Table 1. None of the
compared approaches use a prediction scheme and they do
not seem to gracefully degrade when the input data is noisy.
Furthermore, they cannot exploit partial information about
the stream arrival characteristics (if available) to boost their
performance. In contrast, our general framework can be ap-
plied to any streaming application by simply modifying the
state transition matrix used in the Kalman Filter formula-
tion (details in sec 3).

Research work proposed in [19] models the data stream
from a sensor as a time series and uses an estimation mech-
anism to predict the values of the time series ahead of time.
Our work differs in proposing a general prediction frame-
work and an adaptive solution, which is truly online.

3. THE KALMAN FILTER

The Kalman Filter was introduced in 1960 by R. E. Kalman
[18] as a recursive solution to the discrete-data linear filter-
ing problem. Since then, it has found applications in the
fields of process control [14], multi-sensor data fusion [33],
motion-tracking [32], network-time keeping [8], and neural
information processing [34], to name a few. The traditional
Kalman Filter is a linear algorithm that estimates the inter-
nal state of a system based on two mechanisms [32]:

e Prediction/Estimation
This step is used to propagate the internal state of the
system. At time step k, the filter predicts the value of
the internal state vector at the next time step k + 1.

e Correction
This step is responsible for fine-tuning the prediction
step under the influence of external observations. At
time k+1 when an actual measurement is available, the
filter corrects itself based on the prediction error. This
correction is done by minimizing the error covariance.

The Kalman Filter comprises a set of mathematic equa-
tions that provide a recursive solution to the least-squares

mon to the Discrete Kalman Filter [10]. The system model
is represented in the form of the following equations:

3)
(4)

Trt1 = QrTr + Wk

zk = Hexre + vie
where

zr = (n x 1) state vector of the process
¢ = (n x n) state transition matriz relating i
to Tr41
wi = (n x 1) process model noise
2z = (m x 1) measurement vector
H;. = (m x n) matriz relating system state and
measurement vector
Vi = (m x 1) measurement noise
k = discrete time index
n = number of state variables

m = number of measurement variables.

The covariance matrices for the we and ve vectors are as

follows:
i=k
i#k [
i=k
i1#£k [

E[wwvI]= 0 forall k and i. (7)

The prediction &% is based on a linear combination of pre-
vious prediction/estimation &, , and the weighted difference
of the measurement and its estimate (called innovation).
The value of the weight is adjusted with each measurement
and is called the Kalman Gain K. The prediction is cal-
culated as follows:

Flwwwf] = { 3 ©)

E[vevf] = { I({]k (6)

T = f:,: +Kk(zk — Hk:f:,:)

(8)
The estimation error is defined as

e, =Tk — &g, (9)
and the a prior: error covariance as

P = Elege; ") (10)
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Figure 2: Architecture of DKF model

Applying the least squares method we get
Ky = P, HY ( H.P; HY + Ri) ™%, (11)
and the a posteriori error covariance as
P, =(I - KiH)P,, . (12)

Thus each prediction-correction step in the algorithm com-
putes the value of P and K, updates the system with these
values, and obtains the next prediction & accordingly.

3.1 The Dual Kalman Filter Model

The architecture of our dual Kalman Filter model is de-
picted graphically in Figure 2, and the notations used are
tabulated in Table 2.

The problem of adaptive setting of precision widths at in-
dividual sources has already been explored in [23]. The focus
of this work is to adaptively predict the values at the main
server with minimal information updates from the actual re-
mote source. When a continuous query g; with a precision
constraint A; is presented to the server on source object
si, a Kalman Filter KF: is installed at the main server. A
mirror KF, KFi, is activated at the remote source, which
simulates the operation of KF.. For the sake of simplicity,
we assume that A; = §; and that we do not have queries
with overlapping sources.

[ Symbol | Significance |

t Total number of sources

u Total queries

i Streaming source object 1 (1 =1---1)

4 Query j (1=1---u)

A; Precision width of ¢; (¢ =1+ - uw)

; Precision width at s; (1 =1---1t)

F; KF Smoothing factor (optional) at source s;

KF} KF at central server predicting attribute
value at s;

KF;, Mirror KF at s; simulating KF}

KF; KF at s; used for data smoothing (optional)

vf Actual value of streaming attribute at s; at
time instant k

oF Prediction of attribute value at s; from KF;
at time instant k

@f‘l — vF | Innovation sequence from KF. at s;

Table 2: Symbols and their meanings

At the main server we have as many filters running as the
number of remote sources t. Since KF is not very expensive
computationally (typically in sensor systems the number of
state variables and the rank of the matrices are low), we
assume that having multiple Kalman Filters at the main
server does not affect the performance significantly. Both
filters, KFi, and KF%, operate on the same parameters and
precision width ;. Latest values from the remote source are
updated to the main server only when the prediction error
exceeds the given precision (i.e., when | 9F~1 — of |> &;).
The user can also provide an optional parameter F; with
the query. This parameter controls the extent to which the
data is smoothed by KF:, before the attribute is considered
by KFi,. When the input streaming value is noisy and the
average values are desired for query answering, F' is useful in
providing fine-grain control to the user, over the sensitivity
of the result.

This approach saves communication overhead in the fol-
lowing way. Suppose we are tracking a moving object. If the
object is moving in a particular direction, then it is likely
to continue moving in the same direction in the near future.
Thus after a few measurements the filter may not require
any further measurement updates until the object performs
some maneuvers to change the motion pattern, or the noise
corrupts the estimation process significantly. However, this
should occur infrequently if the state model is correct and
the sensor measurements reliably predict the state.

Our approach can be useful in data streaming and provide
the following advantages :

1. It is more effective than caching approximate results
[23, 25] at the main server, as KF provides time-varying
estimated values of the stream attribute at a lower
communication cost.

2. Due to flexibility and generality of the filter we can
model different processes (even non-linear models) ac-
curately, applying the same framework to different ap-
plications.

3. F; gives fine-grain control on the level of data smooth-
ing and thus control over the sensitivity in the query
result, which is more effective than the moving average
approach.

4. From experimental results we show that even when



the state transition equation is not known, DKF can
perform sufficiently well.

5. The innovation sequence (6! —v¥) helps in detecting

outliers and adaptively adjust the sampling rate.

6. It is relatively simple to change the state equations
dynamically, as they are parameters to the system.

3.2 Why Kalman Filter?

In casting stream resource management into a filtering
problem, or more specifically a Kalman filtering problem,
it is necessary to examine the applicability of the Kalman
Filter under a wide variety of possible problem formula-
tions. The Kalman Filter is a stochastic, recursive estima-
tor, widely used in estimating the internal state of a system
based on the observation of the system’s external behav-
ior. In essence, what a Kalman Filter does is to maintain
and update the best estimate of the internal state by prop-
erly weighing and combining all available data (state prior
and external measurements) to form an educated guess. It
accomplishes this feat by propagating the state estimate for-
ward in time (a prediction process), incorporating external
measurements whenever they are made available to update
the state estimate (a correction process), and repeating these
steps recursively and continuously over time. Or the Kalman
Filter operates a prediction-correction mechanism for state
estimation based on the Bayesian principle.

Many variations are possible in formulating a resource
management problem under the umbrella of the prediction-
correction paradigm. What is unique about the Kalman
Filter, as we will illustrate below, is that the Kalman Filter
can be customized to form workable solutions for all these
formulations. The adaptation involves both simplification
(e.g., static Kalman Filter or recursive least squares) and
generalization (e.g., extended Kalman Filter).

Variation in problem formulations can come from (1) the
state, whether it is directly observable or not, (2) the state
propagation equation, whether it is linear or not, (3) the
external measurement equation, whether it is linear or not,
(4) the external measurement, whether it comes with a con-
fidence value or not, and finally (5) the noise processes,
whether they are stationary or not. We will discuss these
five system design parameters in greater detail below.

The special case in which the state is directly observable
(case 1 above) does not pose any problem. This is the case
when the resource to be managed is directly measurable
(e.g., CPU or memory usage). In this case, the H matrix
that relates the internal state to the external measurement
is an identity matrix. In other cases, the Kalman Filter
formulation applies unchanged.

The standard Kalman Filter assumes that both the state
propagation equation and the external measurement equa-
tion are linear [20]. This is the case for the first example in
our experiments (Section 4.1), where the position and ve-
locity of a mobile platform moving in a plane are tracked.
The internal state in this case comprises the current esti-
mated position and velocity of the platform, and the exter-
nal measurements are the observed positions of the platform
(through dead reckoning, GPS positioning, or sensor feed-
back). When either the state propagation equation or the
external measurement equation is non-linear (cases 2 and
3!), these equations are first linearized in the most recent

!For example, if the moving platform can also rotate about

estimate, which results in the extended Kalman Filter (EKF)
formulation. While EKF loses many nice mathematical prop-
erties enjoyed by the standard Kalman Filter (e.g., provable
convergence) [20], it nonetheless is very useful, easy to im-
plement, and efficient at run time.

As the Kalman Filter is really a Bayesian estimator in
disguise [15, 29], its basic operation is to properly weigh all
available data to arrive at a best state estimate. The data
can be at times corroborating or conflicting, and the Kalman
Filter depends on the confidence measure associated with
the data to break the tie if necessary. Such a confidence
measure, in Bayesian terminology, is the error covariance
matrix of the data measurements. The Kalman Filter weighs
different measurements using the inverse of the covariance
matrix (i.e., the larger the error, the smaller the weight).

Situations do arise when such a confidence measure may
not be available (case 4). For instance, in the network
monitoring example used in our experiments (Section 5.3),
the network traffic data are measured exactly. In a mobile
robotics application, an ultrasound sensor might return the
distance to a nearby obstacle, without indicating how accu-
rate the measure is. Under such a condition, unless an alter-
native way can be found to assign a meaningful confidence
(or error) measure, the data are treated as absolutely cor-
rect (or as the ground truth). While the standard Kalman
Filter formulation is still applicable, maintaining and up-
dating the covariance matrices makes little sense. (As the
measurements are treated as absolute with zero variance,
they dominate the evidence fusion process.) State estima-
tion then can be shown to reduce to a least-squares or, more
generally, a weighted least-squares fitting problem, where
the system state is chosen to best explain the external ob-
servation. In that sense, least squares can be considered a
special case of Kalman filtering.

Finally for case 5, whether the noise processes are sta-
tionary affects the runtime performance. When the noise
processes are stationary, e.g., when the position of a mobile
platform is reported by a GPS system at regular internals
with a fixed precision, the propagation of error covariance
becomes completely predictable. This is because updating
error covariance involves only the covariances of the state
propagation and external measurement processes, not the
actual sensor readings themselves. This process can then
be performed off-line, resulting in the Riccati equation [20].
In many real-world applications, the error covariance is not
stationary, e.g., an ultrasound distance reading is much less
accurate if the sound wave is aimed at a wall obliquely, re-
sulting in little energy bounced back to the receiver. In this
case, the covariance update has to be carried out in real-
time.

To summarize, the reason that we use the Kalman Fil-
ter in our research is that the same filtering framework can
be customized to address all the situations mentioned above,
providing a powerful and versatile filtering paradigm for re-
source management. In the following sections, we will dis-
cuss our formulation with respect to the three important
system design parameters: whether the problem formula-
tion is linear (if not, an extended Kalman Filter should be
used), whether the external measurements are associated

itself, it is then necessary to incorporate the vehicle’s ori-
entation and angular velocity in the state description. The
observed position and orientation of the vehicle will then
depend on the state vector in a non-linear manner.



with an error value (if not, a least squares or a weighted least
squares formulation should be employed), and whether the
noise processes are stationary (if not, the covariance matrix
is computed and updated in real-time).

4. MODELING KALMAN FILTER FOR DA-
TA STREAMING APPLICATIONS

We now describe how to map a data stream problem to
our proposed DKF model. Due to the space limitations we
present experimental results to illustrate only a few advan-
tages mentioned in Section 3. We tested our proposed model
on three different data sets to demonstrate the advantages
1-4 mentioned in Section 3.1. Testing was done on both
synthetic and real datasets. We also show how to construct
the state transition matrices for different scenarios.

o Ezample 1: Tracking a Moving Object.

This example shows the performance of the Kalman
Filter when the streaming attribute value does not
have high noise and continues a trend in arrival charac-
teristics for longer periods of time. Figure 3 shows the
synthetically generated data. The experiment involves
tracking the position (in two dimensions) of an object
moving on linear line segments of different slopes. We
demonstrate the first and the fourth advantages men-
tioned in Section 3.1 through this example. We also
show that linear KF model performs better than the
precision caching model [23]. If we choose a less accu-
rate model (the constant KF model) the performance
is equivalent to that of [23].

o Ezample 2: Monitoring Average Zonal Electric Load.
The dataset holds the average power load in a partic-
ular zone over a period of one month [22]. This exam-
ple exhibits the performance of the Kalman Filter for
complex models, demonstrating the second advantage
in Section 3.1. The dataset attribute value used in this
example shows a sinusoidal trend over time (see Figure
6). We present experimental results for linear as well
as sinusoidal KF models in this example. We show
gains in performance if we use a correct model, and
also that the performance does not degrade much if
we use a less accurate model (the constant KF model).

o Ezample 3: Network Monitoring.

This experimental setting is useful for monitoring the
HTTP traffic between an organization and the outside
world [31]. This experiment is used to exemplify the
third and the fourth advantages of using DKF. The
experimental dataset shown in Figure 9 does not depict
any visually-identifiable trend. Here we illustrate the
use of the data smoothing feature of the Kalman Filter.
We also show how the user can control the sensitivity
in the final query answer using the smoothing factor
F.

We now describe how the KF equations can be framed for
each of the examples shown above.

4.1 Tracking a Moving Object

In most of the moving-object tracking systems, the future
location of the object is modeled as a linear function of time.
Thus, the trajectory of the moving object is a line segment
in the space-time domain. We restrict the movement of the

object in the two-dimensional space: thus the location of
the object can be represented by a point P(x,yx) at time
instant k. Since the object is allowed to move only along
straight lines, we have four state variables:

e 1;, the Xcoordinate
e 1y, the Ycoordinate
e i, rate of change of the Xcoordinate
e gy rate of change of the Ycoordinate
The state transition equation then becomes:
Tk = Lp—10t + Tp_1
Yk = Yr—10t + Yr—1
Ty = Tp_1
Uk = Yk—1
where §t is the time interval between k and k — 1.
The measurement from the sensors in most cases (e.g.,

using a GPS) is the location P = (zz, 2y), and thus the
measurement matrix z is

[22 zy]T

The same Kalman Filter formulation can be easily gener-
alized or simplified to suit many different system models and
external observations, giving the system tremendous flexi-
bility in modeling different behaviors. For example, if we
expect the trajectories to be jerky, then more state param-
eters, which keep track of increasingly higher-order behav-
iors, can be used. For example, we can have a state vector
of the form [P, P, P, P]T and a transition equation of the
form Py = Pioi + Poo10t + 1510t + 1 P_16t®. If a
shaft encoder is used, it is possible to obtain the velocity
information to enrich the measurement as [zz, 2y, 2z, 2]

We can also model this process with just two state vari-
ables, where we do not maintain the rate of change of the
X and Y coordinates. Although this would be a less ad-
equate model to map the system, we show in our results
that it performs at least as well as the conventional caching
method [25]. Using a constant state transition model we
have

Ty = Tg—1
Y = Yr—1-

‘We can now present the matrices involved in the construc-
tion of the Kalman Filter for this problem. The state and
covariance matrices are of the same dimension, but the di-
mensionality depends on the dynamic components in the
system. For simplicity we keep the @ and R matrices as
diagonal matrices with value 0.05 and of dimensions 4 x 4
and 2 x 2, respectively. The state vector x is represented
as

Tk
Tk
= . 13
T e (13)
Yk
The state transition matrix for a linear model is ¢y is
1.0 6 0.0 0.0

b = 0.0 1.0 0.0 0.0
=100 00 1.0 6t
0.0 00 0.0 1.0

(14)



Similarly the state transition matrix for a constant model is

1.0 0.0
Pr = [ 0.0 1.0]'

The state measurement matrix Hy, is represented as follows:

1.0 0.0 0.0 0.0
0.0 00 1.0 0.0 |-

(15)

H, = [ (16)
We assume that ¢ remains constant here. Although a more
realistic value of ¢ would make the model more accurate,
we use a constant value for simplification, and show the
generality of the model we propose.

We assume Hj to be constant to maintain simplicity. As
evident from the equations the object is expected to follow
its old trajectory in the absence of any forcing function.
Thus when there are no measurements, the filter predictions
would be based on the latest trend (slope) that the object
has been following.

4.2 Monitoring Average Zonal Electric Load

In this example we measure the electric power load of a
particular zone, updated every hour [22]. A close look at the
dataset (Figure 6) indicates that the measurements follow
a sinusoidal trend, where the load reaches its peak value
during the working hours and drops during the night and
early morning hours. At time instant k, if the sinusoidal
component is asin(wt + 0), then this process can be best
modeled by using two state variables z and s, as follows:

Tp = Tp—1 + ycos(wk + 0)sp—15k = Sk—1
where,

zr, = value of the average power load
asin(wk + 0)

sk = rate of change of sinusoidal component

d
= o = ~vecos(wk + 0)

w, v, 0 and a are system parameters

Matrices for this model can be constructed in a fashion sim-
ilar to that in Section 4.1

1.0 ~ycos(wk + 6)

D=1 00 1.0 (17)

and
Hp=[10 00]. (18)

The state transition matrix for a linear model can be con-
structed similarly.

4.3 Network Monitoring

In this example we measure the HTTP traffic between
an organization and the rest of the world [31]. We show
a different application of DKF through this example. As
shown in Figure 9 the data is extremely noisy revealing no
visually-identifiable trend. In this situation it is difficult
for any prediction algorithm to aid in conserving network
communication overhead. We propose to smooth the data
online before operating on it. This is done by using one
extra Kalman Filter KF? at the remote source. This filter
smooths the data based on parameter F; and feeds data to
the other Kalman Filter (KF%,) at the remote source. KF¢,

considers the output from the smoothing filter as the mea-
surement and operates normally as described in the above
sections. The performance of DKF is tested on both linear
and constant model described in the previous sections. Note
that the state transition matrices remain the same for the
constant model KF and the smoothing KF. This matrix con-
tains just one element whose value is unity. The extent of
smoothing is controlled by parameter F;, which is the value
of the element of a process noise covariance matrix.

5. EXPERIMENTAL RESULTS

The performance of all our proposed models was tested
against that of a cached approximation scheme used in [23].
Under this scheme each remote source s; has a precision
width ;. A precision bound consists of a lower bound L and
an upper bound H such that H — L = W; < §;. Each time a
sensor measurement V' falls outside the bound it is updated
to the main server, and the new bounds (Hpew, Lnew) are
adjusted such that Hpeyy = V+W;/2 and Lpew = V —W; /2.
The latest precision bounds are also cached at the main
server. We do not consider dynamic bound growing and
shrinking in our results as in [23].

We present a comparative analysis of our approach based
on two metrics, percentage of updates and average error
value. Percentage of updates is the ratio of updates that
are actually sent to the main server to the number of read-
ings taken by the remote source. Average error value is the
average error within the precision constraint encountered
during the query. At each time step tg, if vi°“"°® is the
reading at the remote source and vi*"“*" is its cached or
predicted value, the error e is | vg®*"°® — vg®"™¥*" |. If the
total number of readings made by the remote sensor is n,

then average error value = ) k.

k

We now present experimental results for examples intro-
duced in Section 4 . All the experiments were conducted on
a Pentium III processor with 256 MB of memory on 10/100
Mbps Local Area Network (LAN). The coding was done on
JDK 1.2.4 using JAMA matrix package [9] for performing
matrix operations. The data set used in Example 1 is syn-
thetic whereas real-datasets were used in Examples 2 and
3.

5.1 Example 1: Moving Object Environment

We simulated a moving-object trajectory for the purpose
of this experiment. Each moving object had two attributes
namely location (in terms of X and Y coordinates) and ve-
locity (in terms speed and angle of direction). We used
Java’s uniform random-number generator to generate differ-
ent slopes of the velocity vector at random intervals of time.
We generated different speeds of the object at random time
intervals in a similar manner. Thus the object could ran-
domly change its speed and heading, and then continues on
that linear path for a randomly generated length of time.
The maximum speed of the object was limited to 500 units,
whereas the slope could arbitrarily change by any amount.
‘We constructed a dataset shown in Figure 3, using the above
model containing 4000 data points at a sampling rate of 100
ms.

We tested the performance of the Kalman Filter approach
on two different state models :

e Constant KF model
The system is modeled such that the latest updated



value is the best prediction for the future. This model
is conceptually similar to the cached approximation
value model [24]. The measurement consists of just
the position of the object in the two dimensional space,
i.e., X coordinate and Y coordinate.

e Linear KF model
Under this model we take the rate of change of the po-
sition into consideration when predicting future values.
The state equations were described in Section 4.1.
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Figure 4 shows comparative results of the two Kalman Fil-
ter models against the cached approximation scheme. Mea-
surements are taken in the form of position P(z,y). Given a
precision constraint §, point P(z,y) is updated to the server
if error in either X or Y value is greater than §. In both the
KF models, only position is recorded, there is no measure-
ment of the rate of change of coordinate values. As evident
from Figure 4, the percentage of updates using caching and
constant KF model is the same. This is because the con-
stant model is similar to the caching scheme, where the rate
of change of values is not taken into consideration. How-
ever, if we use the linear KF model, we see that utilization of
the communication source was cut down by approximately
75% at a moderate precision width of 3 units. As the preci-
sion width increases, the communication resource utilization

drops, and all three models show comparable performance.
We also observe that the DKF performs at least as well as
the caching scheme even in a worst-case scenario (constant
KF model). However, if some information about the stream
arrival characteristics is available (linear KF model), it can
provide a boost to the performance of the system.
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Figure 5: Average error produced by different KF
models (Example 1)

Figure 5 shows the comparative results for average er-
ror values. The curves exhibited by the constant DKF and
the caching scheme are similar; however, the performance
of the linear DKF is slightly worse for low precision values
but better for higher precision ones. The errors are mea-
sured as sum of errors in both the X and Y coordinates.
Thus if Azy, is the error in the X coordinate and Ayy, is the
error in Y coordinate at time instant k, the total error is
| Azg | + | Ayr |- Thus we observe that even after saving
significant communication overhead, DKF does not degrade
the performance of the system adversely.
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Figure 6: Electric power load dataset (Example 2)

5.2 Example 2: Monitoring Power Load

This dataset consists of electric hourly power load from
a zone for a month and contains 5831 data points. The
dataset is shown in Figure 6. A closer look at the data
shows a sinusoidal trend. Since such stream characteristics
can only be deduced after the stream has been analyzed by
the system, an accurate model may not always be available.
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Hence, we test the dataset on two KF models, one that as-
sumes sinusoidal components and the other that works on a
simple linear KF model. Using notations from Section 4.2,
we used the following parameters in the sinusoidal model:
w = 18/w, § = m and k = 3500. We tested the sinusoidal
model on different parameters, but no significant degrada-
tion in performance was observed, and in almost all cases
the sinusoidal KF model outperformed the caching model,
thus exhibiting the robustness of DKF. Figure 7 shows com-
parative results for the two KF models used for DKF. For
such a complex data arrival characteristic, using a correct
KF model gives performance boost of almost 10

Figure 8 shows the average error values. It is seen that
performance is relatively comparable for low-precision val-
ues. However, for higher precisions caching the model gives
slightly better results. At higher precision widths the av-
erage errors increase for DKF models, but performance on
communication resource conservation improves.
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Figure 8: Average error produced by different KF
models (Example 2)

5.3 Example 3: Network Monitoring

Here we show another application of KF in processing
noisy data streams. This dataset was obtained from [31],
and was later processed to hold the number of HTTP pack-
ets between Digital Equipment Corporation (DEC) and the
rest of the world sampled at an interval of 10 time-stamp
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Figure 9: Network monitoring dataset (Example 3)

units. As evident from Figure 9 the data shows little visible
trend and appears like a collection of noisy measurements.
In such situations it is often acceptable to provide query
results based on moving average values. However moving
averages do not follow the trend in the original data closely.
Even a series of spikes after a few steady measurements will
not alter the moving average value significantly. Thus us-
ing this method does not provide fine-grain control over the
query precision. KF provides this fine-grain control based on
a parameter F passed to the filter along with other initializa-
tion parameters. The value of F is the covariance assumed
in the process model. The advantage of using KF is that it
does not require any extra memory, yet provides with a true
online solution.
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Figure 10: Comparative results for KF smoothing
against moving average approach

The adherence of the smoothed data with the real data
using KF is shown in Figure 10. It can be seen that using
sufficiently low value of F (i.e., F = 107°) the smoothed
data values match those produced using a moving average
approach.

The performance of DKF for different values of precision
for F = 1077 is shown in Figure 11. Since the data have
been smoothed, the reduction in communication overhead is
better using a linear KF model.

The effect of parameter F' on the performance for a given
precision is shown in Figure 12. Lowering F' improves the
performance as the variation in the data value decreases.
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Thus, we observe that using F' we have a more flexible model
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Figure 12: Performance of DKF for precision width
d =10 (Example 3)

at hand, which can be made to provide results similar to
those of moving averages if fine granularity is not desirable.

6. CONCLUSIONS AND FUTURE WORK

‘We have proposed a novel solution based on a dual Kalman
Filter approach to save communication resources in a multi-
ple data streams environment. The framework is presented
as a general model, which can be used in a large variety
of data-streaming applications. Experimental results reveal
that the KF approach gives improved performance in sav-
ing communication resources. The system is shown to be
robust: it performs well even when the application cannot
be modeled accurately. For future work we would like to in-
vestigate the following issues and incorporate their solutions
into our existing model:

e Developing an end-to-end system, having a general
framework for application to streaming systems.

e Investigating updating the state transition matrices
online as the streaming data trend changes.

e Developing models for non-linear systems.

e Tuning system parameters for multiple queries with
multiple attributes.

o Developing solutions for adaptively adjusting the sam-
pling rate based on the innovation sequence.

e Studying the robustness of the KF when the statistics
(for example, the covariance matrix) of the noise are
not known, and

o Investigating applications of the Kalman Filter for stor-
ing stream (summaries/synopsis) under the constraint
of specified reconstruction error tolerance.
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