Congressional Samples for Approximate Answering of
Group-By Queries

Swarup Acharya

Phillip B. Gibbons

Viswanath Poosala

Information Sciences Rescarch Center

Bell Laboratories

600 Mountain Avenue
Murray Hill NJ 07974
{swarup,gibbons,poosala}@research.bell-labs.com

Abstract

In large data warchousing environments, it is often advanta-
geous to provide fast, approximate answers to complex deci-
sion support queries using precomputed summary statistics,
such as samples. Decision support queries routinely segment
the data into groups and then aggregate the information in
each group (group-by queries). Depending on the data, there
can be a wide disparity between the number of data items
in cach group. As a result, approximate answers based on
uniform random samples of the data can result in poor accu-
racy for groups with very few data items, since such groups
will be represented in the sample by very few (often zero)
tuples.

in this paper, we propose a general class of techniques
for obtaining fast, highly-accurate answers for group-by
queries. These techniques rely on precomputed non-uniform
(biased) samples of the data. In particular, we propose
congressional samples, a hybrid union of uniform and biased
samples~ Given a fixed amount of space, congressicnal
samples seek to maximize the accuracy for all possible
group-by queries on a set of columns. We present a
one pass algorithm for constructing a congressional sample
and use this technique to also incrementally maintain the
sample wup-to-date without accessing the base relation.
We also evaluate query rewriling strategies for providing
approximate answers from congressional samples. Finally,
we conduct an extensive set of experiments on the TPC-D
database, which demonstrates the efficacy of the techniques
proposed.

1 Introduction

The last few years have seen a tremendous growth in the
popularity of decision support applications using large-
scale databases. These applications, also known as on-
line anafytical processing (OLAP) applications, analyze
historical data in a data warehouse to identify trends that
can be exploited in defining new business strategies. Often,
this process involves posing several complex queries over

Parmission to make digital or hard copiag of all ar part of this work fof
personal or classroom use is granted without fee provided that

copies are not made or distributad for profit or commercial advant

-agie and that copies baar this notice and the fuli citation on the first page.
To copy atherwise, to republish, o pOSt on Barvers or 1o

redistribute to lists, requires prior specific permission andior a fee.

ACM SIGMOD 2000 5/00 Dalias, TX, USA

© 2000 ACM 1-58113-218-2/00/0005...$5.00

487

a massive database.' As a result, these queries can take
minutes, and sometimes hours, to execute using even the
state-of-the-art in data warchousing and OLAP technology.

A novel approach to address this problem, which has
been receiving attention lately, is to provide approrimnate
answers to the queries very quickly [HHWS7, AGPR99,
VWag, 1P99]. This approach is particularly attractive for
large-scale and exploratory applications such as OLAP. For
example, a typical decision making process ivolves posing
several preliminary queries to identify interesting regions of
the data. For these queries, precise answers are often not
essential. Similarly, for queries returning numerical results,
the full precision of an exact answer may be overkill — the
user may welcome an answer with just a few significant digits
(e.g., the leading few digits of a total in the millions) if it is
produced much faster. These approximate query answering
systems give fast responses by running the queries on some
form of summary statistics of the database, such as samples,
wavelets and histograms. Additionally, the approximate
answers are often supplemented with a statistical error
bound to indicate the quality of the approximation to the
user.’ Because these statistics are typically much smaller
in size, the guery is processed very quickly. The statistics
may either be generated on-the-fly after the query is posed,
as in the Online Aggregation approach [HHW97], or may be
precomputed a priort, as in the Agua system JAGFR99] we
have developed.

A popular technique for summarizing data is taking
samples of the original data. In fact, this is the fundamental
technique used by both the above-mentioned approaches
to approximate query amswering. In particular, uniform
random sempling, in which every item in the original data
set has the same probability of being sampled, is used
because it mirrors the original data distribution. Also, by
increasing the sample size, the system can provide more
accurate responses to the user. Due to the usefulness of
uniform samples, commercial DBMSs such as Oracle 8i are
already supporting operators te collect uniform samples.

1.1 Limitations of Uniform Sampling

While uniform random samples provide highly-accurate
answers for many classes of queries, there are important
classes of queries for which they are less effective. This
includes one of the most commonly occurring scenarios in

YA survey by the Data Warchousing Institute indicates that
the average warchouse size is expecied to exceed 400GB in the
year 2000 and that a single decision process may involve more
than ten fairly complex gueries,

2In our discussion, user refers to the end-user analyzing the
data in the warehouse.

decision support applications is to segment the data into
groups and derive some aggregate information for these
groups. This is typically done in SQL using the group
by operation and hence we refer to them as group-by
queries. For example, a group-by query on the U.S. census
database containing information about every individual in
the nation could be used to determine the per capita income
per state. Often, there can be a huge discrepancy in
the sizes of different groups, e.g., the state of California
has nearly 70 times the population of Wyoming. As
a result, a uniform random sample of the relation will
contain disproportionately fewer tuples from the smaller
groups (states), which leads to poor accuracy for answers
on those groups because accuracy is highly dependent
on the number of sample tuples that belong to that
group [HHW97, AGPR991.? This behavior often renders the
answer essentially useless to the analyst, who is interested
in reliable answers for all groups. For example, a marketing
analyst using the Census database to identify all states with
per capiia incomes above some value will not find the answer
useful if the aggregates for some of the states are highly
€ITONEOUS,

In fact, the inability of uniform random samples to
provide accurale group-by resulls is a symptom of a more
general problem with uniform random samples: they are
most appropriate only when the uiility of the data to the
user mirrors the date distribution. Thus, when the utility
of a subset of the data to the user is significantly higher
relative to its size, the accuracy of the answer may not
meet the user’s expectation. The group-by query is one
such case where a smaller group is often as important to
the user as the larger groups, even though it is under-
represented in the data. A multi-table query is another
example: a small subset of the data in a table may dominate
the query result if it joins with many tuples in other
tables [AGPR99, CMN99, HH99]. The flip side of this
scenario is when different logical parts of the data have
equal representation, but their utility tc the user is skewed.
This occurs, for example, in most data warechouses where the
usefulness of data degrades with time. For example, consider
a business warehouse application analyzing the Lransactional
data in the warehouse to evaluate a market for a new line
of products. In this case, data from the previous year is
far more important than outdated data from a decade ago.
Moreover, the user is likely to ask more finer-grained queries
over the more recent data. This, in turn, means that the
approximate answering system has to collect more samples
from the recent data, which is not achieved with a uniform
random sample over the entire warehouse.!

To address these inadequacies of uniform random sam-
ples, we consider nen-uniform (i.e., biased) samples in this
paper, which are discussed next.

1.2 Biased Sampling for Group-by Queries
In this paper, we propose a general class of techniques
for obtaining fast, highly-accurate answers for group-by
queries using {precomputed) biased samples of the data.
We focus on group-by queries because they are among the
most important class of queries in OLAP, forming an es-
sential part of the common drill-down and roll-up pro-
cesses [Kim96, CD97). For example, of the 22 queries in Ver-
sion 2.0 of the TPC-D benchmark [TP(C99), 15 are group-by

#Based on this observation, the Online Aggregation approach
employs an index striding technique to sample smaller groups at
a higher rate [HHW97].

4Note that other common summary statistics such as his-
tograms and wavelets suffer from this same general problem.

438

queries. Our solutions, however, are more general and can be
applied to a much broader set of problems wherever the lim-
itations of uniform random samples become critical. Briefly,
our techniques involve taking group-sizes into consideration
while sampling, in order to provide highiy-accurate answers
to queries with arbitrary group-by operations (even none)
and varying group-sizes. Our solutions apply and extend
known techniques for subpopulation/domain/species sam-

pling [Coc77] to the approximate answering of group-by

queries. Our key extensions include considering combina-
tions of group-by columns, construction and incremental
maintenance, query rewriting, and optimizing over a query
mix.

There are a number of [actors affecting the quality of an
answer computed from a sample, including the query, the
data distribution, and the sample size. Of these, sample size
15 the most universal in improving answer quality across a
wide range of queries and data distributions. Thus we focus
in this paper on ensuring that all groups are well-represented
in the sample. We consider single table queries; however,
our techniques can be immediately extended to queries with
foreign key joins, the most common type of joins (e.g., all
joins in the TPC-D benchmark are on forcign keys), using
the techniques in [AGPR99].

The techniques in this paper are tailored to precomputed
or maieriglized samples, such as used in Aqua {see Sec-
tion 2). Advantages of precomputing over sampling at query
time include (1) queries can be answered quickly without ac-
cessing the original data at query time, (2) sampled tuples
can be stored compactly in a few disk blocks, avoiding the
overheads of randem scanning, (3) no changes are needed
to the DBMS’s query processor and optimizer, and (4] data
outliers such as small groups can be detected and incorpo-
rated into the sample. On the other hand, precomputed
samples must commit to the sample before seeing the query,
and are not well suited to supporting user-controlled pro-
gressive refinement [HHW97].

Qur contributions are as follows:

¢ We introduce a hybrid union of biased and uniform sam-
ples called congressional samples®, which provide statis-
tically unbiased answers to queries with arbitrary group-
by (including no group-bys), with significantly higher ac-
curacy guarantees than uniform samples. Given a fixed
amount of space, congressional samples seek to maxi-
mtize the accuracy for all possible group-by queries on a
set of columns. We also propose efficient strategies for
execuling queries on these samples.

¢ We develop a one pass algorithm for constructing a
congressional sample without a priori knowledge of
the data distribution. We use this technique to also
incrementally maintain the sample as new data is
inserted into the database, without accessing the base
relation. This ensures that queries continue to be
answered well even as the new data changes the database
significantly.

e We show how congressional samples can be specialized
to specific subsets of group-by queries. We also extend
them to use detailed information about the data, such as
variance, and to improve the answers for non-group-by
queries.

5As discussed in Section 4, the name congressional samples
reflects an analogy to the U.8. Congress, which combines biased
representation (two Senators per state, regardless of population)
with more uniform representation (Representatives in proportion
to a state's population).

Queries @ Approx. Answers
O '1 AQUQTCEJ,E Bounds

New
Data & EE] L

_ Data Warehouse -

[1xeturnflag | i-linestatus | sum{l.quantity)
A F 2773034
N F 100245
N ¢} 7459912
R F 3779140

Figure 3: Exact answer.

ol
‘F—';-- [1xeturnfiag | L linestatus | sum(] quantity) | errerl |
. . A 13 3.778e406 1.4e104
Figure 1: The Aqua architecture. N T 1‘194;_05 2'6:;04
N O 7.457e406 1.9e4+04
select 1 returnflag, 1. linestatus, sum(l_quantity) R 13 3.782e-+06 1.4e+04 |

from lineitem
where l _shipdate <= *01-SEP-98’
group by lreturnflag, 1 linestatus;

{a) Original query

select lreturnflag, l.linestatus, 100+sum(lguantity),
sum_error(lguantity) as errorl

from ba.lineitem

where l_shipdate <= ?01-S5EP-398*

group by lreturaflag, llinestatus;

(b) Rewritten query

Figure 2: Query rewriting in Aqua.

¢ We conduct an extensive set of experiments to establish
the accuracy of congressional samples and identify an
efficient execution strategy for running queries on them.

Map. The rest of this paper is as follows. In the
next section, we describe Aqua, a system framework for
approximate query answering. Then, we formulate the
problem being addressed in this paper and in Section 4,
we propose our novel sampling solutions. In Section 5,
we highlipht some implementation issues in using these
new solutions in practice. Then, in Section 6 we propose
efficient construction and maintenance techniques. The
experimental study is in Section 7. In Section 8, we
describe extensions of congressional samples that improve
their accuracy for certain classes of queries. In Section 9,
we present related work and in Section 10 we summarize
the conclusions from this work.

2 Aqua System

This work is being performed as part of our efforts to en-
hance Aqua, an efficient decision support system providing
approximate answers to queries [AGPR99, AGP9%a). Aqua
maintains smaller-sized statistical summaries of the data,
called synopses, and uses them to answer queries. A key
feature of Aqua is that the system provides probabilistic er-
ror/confidence bounds on the answer, based on the Hoefld-
ing and Chebyshev formulas [AGPR99]. Currently, the sys-
tem handles arbitrarily complex SQL queries applying ag-
gregate operations {avg, sum, count, etc.) over the data
in the warehouse.

The high-level architecture of the Aqua system is shown
in Figure 1. It is designed as a middleware software tool
that can sit atop any commercial DBMS managing a data
warehouse that supports ODBC commectivity. Initially,
Aqua takes as an input from the warehouse administrator
the space available for synopses and if available, hints on
important query and data characteristics.® This information

SWork is also in progress to automatically extract this
information from a query workload and adapt the statistics

489

Figure 4: Approximate answer.

is then used to precompute a suitable set of synopses on the
data, which are stored as regular relations in the DBMS.
These synopses are also incrementally maintained up-to-
date to reflect changes in the warehouse data.

When the user poses an SQL query to the full database,
Aqua rewrites the query to use the Aqua synopsis relations.
The rewriting involves appropriately scaling expressions in
the query, and adding further expressions to the select
clause to compute the error bounds. An example of a simple
query rewrite is shown in Figure 2. The original query is
a simplified version of Query 1 of the TPC-D benchmark.
The synopsis relation bs_ lineitemis a 1% uniform random
sample of the lineitem relation and for simplicity, the
error formula for the sum aggregate is encapsulated in the
sum_error function. The rewritten query is executed by
the DBMS, and the results are returned to the user. The
exact answer is given in Figure 3. Figure 4 shows the
approximate answer and error bound provided by Aqua
when using this synopsis relation, and indicates that the
given approximate answer is within errorl of the exact
answer with 90% confidence®. The approximate answer for
lreturnflag = N and l.linestatus = F is considerably
worse than for the other combinations; this is the smallest
group (a factor of 35 or more smaller than the others in the
TPC-D database}, and hence it contributes very few tuples
to the sample bs.lineitem. This demonstrates a limitation
of uniform random samples and motivates the need for the
techniques proposed in Section 4.

To address the well-known problem of joins over sam-
ples [AGPRS9, CMN99], Aqua collects special forms of sam-
ples, called join syropses, which can be viewed as uniform
random samples on the results of all the interesting joins in
the warehouse. In [AGPR99], we showed that join synopses
are particularly effective on the star and snowflake schemas
which are common in data warehousing {Sch97]. An interest-
ing outcome of join synopses is that any join query involving

“multiple tables on the warchouse can be conceptually rewrit-

ten as a query on a single join synopsis relation. Due to this
reason, in this paper, we restrict our discussion to queries
on single relations.

3

In this section, we formulate the central problem being ad-
dressed in this paper, namely providing highly-accurate an-
swers to group-by queries in an approximate query answer-
ing system. First, we present some relevant background on
group-by queries.

Problem Fofmulation

dynamically.
7The confidence level is a parameter in Aqua.

3.1 Background

The central fact tables in a data warehouse contain several
attributes that are commonly used for grouping the tuples
in order o aggregate some measured Guantities over each
group. We call these the dimensionalor grouping attributes.
The attributes used for aggregation are called measured
or aggregate attributes. For example, consider the central
table (say, census) in a Census database containing the
following attributes for each individual (the attribute names
are listed in brackets): social security number (s2n), state of
residence (st), gender (gen), and annual income (sal). In
this schema, the grouping columns are st and gen, whereas
the aggregate column is sal. A typical group-by query on
census may request the average income of males and females
in each state.

Of course, every query need not involve all the grouping
columns in it, c.g., highesi income in each state. For
simplicity, we also consider a query with no groupings as
a group-by query returning a single group. It is easily seen
that for a relation containing a set G of grouping attributes,
there are exactly 2!°! possible groupings (the power set U
of G} that can occur in a query. In the census relation,
G is {st, gen} and U is {@,(=t}, (gen),(=t,gen)} (@ is the
empty set).

Next, we identify the typical requirements of approximate
answers to a group-by query and describe natural metrics to
quantitatively capture the errors in those answers.

3.2 Requirements on Group-by Answers

For queries returning a single numerical value {(c.g., aggre-
gale queries with no group-bys), it is straightforward to de-
fine the quality of the answer. It is simply the absolute or
relative difference between the exact and approximate an-
swers. However, since group-by queries produce multiple
aggregates, one for each group, the metric is not so straight-
forward. The MAC error presented in {IP99] for quantifying
the error in set-valued query answers works by matching
the closest pairs in the exact and approximate answers and
then suitably aggregating their differences. However, it is
inadequate for cur purpose because it does not necessarily
match corresponding groups in the two answers. Hence, we
develop here simple metrics specific to group-by queries.

At a high level, the user has two requirements on
the approximate answer to a group-by query. First, the
approximate answer should contain all the groups that
occur in the exact answer, and second, as motivated in the
introduction, the estimated answer for every group should
be close to the exact answer for that group. We guarantee
the first requirement, as long as the query predicates are
not too selective, by ensuring that the schemes presented
in the paper provide at least minimum-sized samples for
every nonempty group in the relation across all grouping
attributes.® Hence, in the remainder of the paper, we
address the second requirement assuming the first to be true.
Below, we formally describe simple metrics for capturing this
requirement.

Let & be a group-by query with an aggregate operation
on one of the aggregate attributes . Let {g1,..,9n} be
the set of all groups occurring in the exact answer to the
query. Finally, let ¢; and ¢ be the exact and approximate
aggregate values over C in the group gi. Then, the error ¢;

8The only way to ensure this requirement for highly selective
queries is to sample nearly the entire relation. Otherwise, none
of the sampled tuples may satisfly the predicate. This places a
lower bound on the space allocated for samples, as a function of
the number of groups and the target selectivity threshold.

490

in group g: is defined to be the percentage relative error in
the estimation of ¢, 1.e.,

o
c;:l—cl~—c'—lx100.
Loy

(1)

For concreteness, we select a specific formalization,
namely relative error, although other similar formulations
{e.g., using absolute error) will not change the nature of the
problem. We define the error in a group-by query as follows,
considering three possible error metrics:

Definition 3.1 The error € over the entire group-by query
returning a set of groups { g1, .., 9. } is defined to be either

1 s
€o = MAXT e, 600 = 2500 e, orepa = /L0 €.

Note that this definition applies even to the case of non-
group-by aggregate queries, where the result is essentially
an aggregate over a single group, in which case the three
metrics are the same,

Using this definition as the basis, we can then informally
define the primary goal to be one of minimizing one or all
of the above errors for a mix of group-by queries.

4 Solutions

Iz this section we translate the general requirements of
an approximate query answering system presented in the
previous section to formal criteria on a sampling-based
system. Then, we propese solutions for precomputing
samples that optimize the criteria for various sets of group-
by queries.

We first study individual groups in the answer and then
the entire group-by query answer.

4.1 Sampling Requirements for Individual
Groups

Here, we discuss the importance of the number of samples
on which the aggregate is performed to the accuracy of
a sampling-based result. Then, we show that among all
possible sampling procedures, uniform sampling maximizes
the expected value of this number.

Importance of Sample Size: The approximate answer
provided from a sample is a random estimator for the exact
answer, and we would like the estimates it produces to have
small relative error (Eq. 1) with high probability. In the
sampling literature, this quality is typically captured by
the standard error of an estimator. Consider for example
a column € in a relation of size N whose attribute values
are t,...,yn, and let {/ be a uniform random sample of
the yi’s of size n. Then the sample mean = <)

R =34 yi is
an unbiased estimator of the actual mean ¥ = £ Zfi) Ui
with a standard error of

T

Ziz (yi —Y)?
N-1

(see, e.g., [Coc77}). In general, the standard error depends
on the sample size, the query [aggregate and predicate),
and the variance of the expression on which the aggregate is
taken. However, query information is usually not known
a priori, and even where partial knowledge is available,
optimizing for those queries may jeopardize the performance

(2)

where

for other ad hoc queries. Because of this, short of sampling
the entire relation, which is impractical, it is not possible
to collect a single sample that works best for all queries.
Hence, we first focus on techniques that are used when
the aggregate, variance, and the predicate are unknown
and later extend the techniques to use this information in
Sections 4.7 and 8.

It is clear from the above equation that the standard error
is inversely proportional to y/ri for uniform sampling®. This
is also true under other common quality measures such as
Hoeffding and Chebyshev bounds, which when applied to
AVG, COUNT, or SUM queries, are inversely proportional to
Van or g/, WhLere q is selectivity of the predicate. Hence,
a natural objective is to maximize the sample size for the
group:

Objective: Let @ be an aggregate query with predicate P.
In order to maximize the quality of an approximate answer
for an aggregate in @, we seek to maximize the number of
sample tuples satisfying P.

Importance of Uniform Sampling: Here, we establish
the need to use uniform random sampling for a single group
by showing that it maximizes the expected sample size over
all query predicates. First, we define some uscful terms.

Let {t1,t2,...,tn} be the set of N tuples in a relation
R. We define a sampling procedure to be an assignment to
each t; of a prebability p;, the probability that ¢; is selected
for the sample. Let C, be the class of all such sampling
procedures such that }:f\;l p; = n, i.e., those with expected
sample size n. Let U, € C, be the uniform sampling
procedure, i.e., p; = n/N for all 1. A predicate P defines
a subset P(R) of R comprised of those tuples satisfying P.
For a given predicate P and sampling procedure C, € Cy,
let E[n|P(R)] be the expected number of tuples satisfying
the predicate in a sample produced by Cy,, i.e., E[n|P(R)] =

Gt P(R) P A natural goal, given the above objective, is
to maximize the minimam E[n|FP{R)] over all subsets P{R)
of a given size.'® The next lemma shows that the uniform
sampling procedure optimizes this goal.

Lemma 4.1 For each subset size k, 0 < k < N, the
uniform sampling procedure U, is the unique samypling
procedure in Crn that mazimizes the minimum Eln|P(R)]
over all subsets P(R) of size k.

Proof. For Uy, the minimum E[n|P(R)] over all subsets
P(R) of size &k is kn/N (all subsets have this same
E[n|P(R)]). For any other sampling procedure in Cy, the
reader can readily verify that the subset P'(R) comprised of
the k smallest p; will have E[rjP'(R)] < kn/N. =

In summary, we have established that it is important to
collect as many uniformly sampled tuples as possible for
any single group in query amswer. Next, we extend our
discussion to the multiple groups cccurring in the group-by
Query answer.

4.2 Sampling Requirements for the Entire

Group-by Answer
Recall from Definition 3.1 that the error in an approximate
answer to a group-by query is the norm of the errors for

¢ While we do not analyze other kinds of sampling procedures
within a group, it is intuitively clear that sample size will have a
positive effect on their accuracy as well.

9Note that for all sampling procedures in Cn, the average
E[n|P(R)] over all P(R) of a given size k is the same, i.e.,

N-1
k—1) T

491

the individual groups, for either the Lo, L1, or Lz average
norm. Hence, similar to the case of a single group, the
quality of an estimator for a group-by query can be measured
by the norm of the standard error for the individual groups.
We seek to allocate a given sample space among the groups
s0 as to minimize this norm.

Consider the L.. average norm (the other two norms
lead to the same optimal strategy, as discussed in the
full paper [AGP99b]). For this norm, and based on our
objective, we seek to mazimize the minimum (ezpacted)
number of sample tuples satisfying the predicate in any one
group, which we denote by e. We extend our earlier notation
and derive an expression for o as follows. Let g be the
number ol groups. For a relation R, let R; be the set of
tuples in R in group j. A predicate P defines a subset
P(R) = P(R1)U-- U P(Ry). Let An, be the class of all
possible allocations of sample sizes to g groups, where the
total size allocabed is . For a given predicate P, a sampling
allocation An 4 € Ap g, and a sampling procedure Cp, € Oy,
o is given by:

a= min {En;PR)]} (3)

where A4, 4 assigns sample size n; to group j, and the sample
within each group j is produced according to Cp;.

For purposes of the analysis that follows, we restrict
our attention to predicates that are independent of the
groupings, i.e., the predicate’s per-group selectivities are
the same for all groups.*! It is clear that our goal is to
mazimize . Next, we present an optimal sampling strategy
for realizing this goal.

Theorem 4.2 lLet T be a sel of grouping aliributes that
partitions a relation R into g non-empty groups, and let X be
the available sample space.’* For each predicate of selectivity
g, 0 < g < 1, among ail allocations in Ax,y and all sampling
procedures in Cy;, the following strategy marimizes the a in

Eq. 3 vver all subseis P(R) with per-group selectivily q:

S1: Divide the available sample space X equally
among the g groups, and {ake o uniform random
sample within each group.

Proof. It follows from Lemma 4.1 that uniform random
sampling within each group maximizes «, for a given
allocation strategy. With uniform sampling, each group
R; allocated n; space has E[n;|P(R;)] = gn;. Hence o
is determined by the smallest r;. Allocating equal space to
each group maximizes the smallest n;, and hence maximizes
a. .

In the remainder of this section, we consider mapping
the strategy 51 to various classes of group-by queries, with
arbitrary mixes of groupings. The difference between the
resulting solutions can be shown by considering an example
of grouping by U.S. states. The first solution we discuss
would sample from each state in proportion to the state’s
population, whereas the second would sample an equal
number from each state. Considering the two brauches of
the U.S. Congress, the former is analogous to the House

n general, it is not possible to tailor a strategy for a
precomputed sample that works best, for all predicates, if the per-
group selectivities of a single predicate can vary widely. Although
the assumption of predicate independence may not always hold
in real life, the sample strategy we derive [rom this analysis works
well even when the assumption does not hold.

2 Throughout this paper, a unit of space can hold a single
sampled tuple.

of Representatives while the latter is analogous to the
Senate. The other techniques are hybrid extensions and
combinations of these two, a Ia the U.S. Congress.

4.3 House

Consider applying the strategy 51 to the class of aggregate
queries without group-bys. In this case, we have but a
single group, so according to S1, we take a uniform random
sample of size X of the entire relation, as is typically
done in traditional sampling procedures. Next, we list
two desirable trends of House (in general, uniform random
samples) which coincide with a user’s expectations on the
quality of approximate answers.

1. For the same aggregate operation, the guality of approz-
imate answers increases with the query selectivity. B.g.,
the standard error for an estimated average income over
the entire nation is typically much smaller than the stan-
dard error for one of the states. (An exception would
be if the variance among the incomes in a state was
markedly smaller than the variance over all the states.)

2. Answers to queries with the same aggregate and equal
selectivities will typically have similar guality guarantees.
Thus assuming an equal number of men and women in
the nation, the guarantees for the estimated average
incomes for men are typically very similar to the
guarantees for the women. (Again, an exception would
be if the variances were markedly different.)

4.4 Senate

Consider applying the strategy S1 to the class of aggregate
queries with the same set T of grouping attributes. Ifor
a given relation R, these attributes define a set, §, of
nonempty groups. Let mo be the number of groups in G.
By followng S1, for each nonempty group g € G, we take a
uniform random sample of size X/m¢ from the set of tuples
in R in group ¢.'* For example, if T = state in a US census
database, then G is the set of all states, mr = 50, and we
take a uniform random sample of size X/50 from each state.

Next, we illustrate a desirable characteristic of the Senate
samples. Given a Senate sample for group-by queries
invelving an attribute set T', we can also provide approzimale
answers to group-by queries on any subsel T of T, with
al least the same gquality. This is because any group on
T' contains in it one or more groups on T. Hence it will
have at least as many sample points as any group in T, and
correspondingly the same or better performance.

Problems with House and Senate: Note that using the
samples from House here would result in very few sample
points for small groups, and hence in a very small o. On the
other hand, Senate allocates fewer tuples to the large groups
in T than House. Hence, whenever queries are uniformly
spread over the entire data, more of them occur in the large
groups, and Iouse will perform better than Senate for those
cases. Next, we present techniques that perform well over
larger classes of group-by queries.

4.5 Basic Congress
Here, we apply the strategy S1 to the class of aggregate
queries containing group~by queries grouping on a single set
T of attributes and queries with no group-bys at all. A
natural solution is to simply collect both the House and the
Senate samples (analogous ¢o the U.S. Congress). However,

13Recall that for simplicity we assume throughout this paper
that each group is larger than the number of samples drawn from
it. Handling scenarios when this is not the case is straightforward.

this doubles the sample space. Thus, we reduce this factor
of 2 by the following strategy.

Let G be all the non-empty groups in the grouping on
T, and let my = |G}. Let g be a group in G and X
be the available sample space. Let n, be the number of
tuples in the relation R in group g. Let hy; and sy be
the (expected) sample sizes allocated to g under House
and Senate respectively. Then, under our new approach,
we allocate the higher of these two (i.e., max(hy,sg)) to

1% Of course, this may still result in a total space of
X’ that is larger than X (one can easily show that X'
2—’317—1:'-1—)(mr -+ 1 < 2X). Hence, we uniformly scale down
the sample sizes such that the total space still equals X.
The final sample size allocated to group g is given by:

n 1
s (1)
1
2oseg Max (mw mT)

A Basic Congress sample Is constructed by selecting a
uniform random sample of size ¢, for each group g in G.

Ag an example, consider a relation R with two grouping
attributes A, B. The different values in these abtributes are
depicted in the first two columns of Figure 5. Assume that
the number of tuples for the groups (a1,51), {a1, b2), (a1, b3},
(az,b3) are 3000, 3000, 1500, and 2500 respectively. The
nexi two columns depict the space allocated by House and
Senate with T'= { A, B} and X = 100. The fifth column
depicts the space allocated by Basic Congress {before scaling
down) by choosing the maximum of the House and Senate
allocations for each group. The next column shows the
allocation scaled down to fit the total available space. Note
that while House allocates less space for the small group
and Sencte allocates less space for the large groups, Basic
Congress solves both these problems. On the other hand,
by considering only the extreme groupings, Basic Congress
fails to address the sample size requirements of groupings
on subsets of T. For example, grouping on A alone would
require an optimal allocation of 50 and 50 samples to the
two groups a; and a2, whereas Basic Congress applied
to T allocates 77.3 and 22.7 units of space respectively.
Consequently, using Basic Congress to answer an aggregate
query grouped solely on A would likely lead to a wmore
inaccurate estimate on the group az.

We address this problem by our final technique, Congress,
proposed next.

X

Cq

4.6 Congress

In this approach, we consider the entire set of possible group-
by queries over a relation R, i.e., queries grouping the data
on any subset (including @) of the grouping attributes, &,
in R. Taking a naive approach of applying Strategy 51
using space X on each such grouping would result in a space
requirement of 261X . Hence, we perform an optimization
similar to Pasic Congress above, but this time over all
possible groupings — not just G and 0, as in Basic Congress.

14%We also consider an alternative approach, as follows. Let
Y = X/(E cc max(F-I, —i—)) Take a uniform sample of size Y

of the rclatwn R. Let x4 be the number of sampled tuples from
a group g. For each group g such that x4 < Y/myp, where mo is
the number of nonempty groups, add to the sample Y/my — z4
additional tupies selected uniformly at random from the set of
tuples in R in group g. Due to the choice of Y, the expected size
of the resulting sample is X. In practice, the difference between
the two approaches is negligible.

A B] House | Sernate | Basic Congress Basic Congress 84,4 $g4.B Congress Congress
[S, sg.ap | {(before scaling) {before scaling)

ar o] 30 75 30 7.3 %0 (of 50) 3 333 335

a | b | 30 25 30 27.3 20 {of 50) 33.3 33.3 23.5

a; | b3 15 25 25 22.7 10 (of 50) 12.5 (of 33.3% 25 17.7

az | bs 25 25 25 22.7 50 20.8 (of 33.3 50 35.3

Figure 5: Expected sample sizes for various techniques, for X = 100.

Let G be the set of non-empty groups under the grouping
. The grouping ¢ partitions the relation R according
to the cross-product of all the grouping attributes; this is
the finest possible partitioning for group-bys on R. Any
group h on any other grouping T C G is the union of
one or more groups g from §. We denote each such g
to be a subgroup of k. For example, in Figure 5, G =
{A, B}, g = {(a;,bl), (a; y bz), (al,b;,), (02, bg) }, and for the
grouping T = { A}, the set of tuples in the group h = a4
is the umion of the tuples in the subgroups (a,b1), (01,5},
and {a;,bz) of &.

To construct Congress, we first consider applying St on
each T C (. Let T be the set of non-empty groups under
the grouping T, and let mr = |7, the number of such
groups. By 51, each of the non-empty groups in T' should
get a uniform random sample of X/mr tuples from the
group. Thus for each subgroup gin G of a group hin 7T, the
expected space allocated to g (from considering T) is simply

X

_X g
8q,T = mr nh’ (4)
where ny and ny are the number of tuples in g and h
respectively. Then, for each group g € G, we take the
maximum over all T' of s, 7 as the sample size for g, and of
course scale it down to limit the space used to X. The final
formulais:

maXrcg Sg.T

Z]’eg maXpeg 55,7

SampleSize{g) = X (5)

For each group g in G, we select a uniform random sample
of size SampleSize(g). Thus we take a stratified, biased
sample in which each group ai the finest partitioning is its
own strata.

The space allocation by Congress for G = {A, B} is
depicted in the last two columns of Figure 5 before and
after scaling. Each entry in the *before scaling” column is
the maximum of the corresponding entries in the 5,4, 55,4,
8,8, and s5 4p columns. These sy contain the optimal
allocations according to S1 when considering grouping solely
on T. By taking the row-wise maximum and then scaling
down all values by the same amount

X

f = 4
ZJEG mangG 35,7

(6}

we ensure that the sample size for every group across all
combinations of group-by columns is within a factor of at
most f of its target optimal allocation.'® Thus Congress
essentially guarantees that both large and small groups in
all groupings will have a reasonable number of samples.

!%The scale down factor f ranges from 1 (for a uniform distri-
bution across all possible groups at the finest level of grouping
G} to almost 2=1%! (for a carefully constructed pathological dis-
tribution presented in the full paper [AGP99b}).

493

[Key]| Grouping Columns || Aggregate Colnmn |

LK ATBTC Q J
E ai 51 C1 q1
ks ai by C2 q2

Figure 6: Relation Rel with two example tuples

select A,B, sum(Q)
from Rel
group by A,B;

Figure 7: User Query Q;
4.7 Adapting to Query Workload

In the full paper, we discuss how to extend the previous
strategies to handle preferences between groupings and/or
between groups, whenever they can be determined.

5 Rewriting

In Section 2, we demonstrated how Aqua rewrites queries
in the presence of uniform random sarmples. However,
that approach does not apply to the biased samples
presented in this paper. This section highlights some of the
implementation issues that arise when using such samples.
We first give some background on generating approximate
answers from biased samples. Then, we present different
strategies for rewriting queries in the presence of biased
samples.
5.1 Approximate Answers from Bilased
Samples

Recall that query rewriting involves two key steps: a) scaling
up the aggregate expressions and b) deriving error bounds
on the estimate. The desired formulas for both steps can be
derived using standard techniques. We illustrate by locusing
on scaling. In Figure 2, the SUM operator was scaled by a
factor of 100 since bs_lineitem was a 1% uniform random
sample. We refer to this factor as the ScaleFactor. However,
biased samples are not uniform samples — instead they
are a union of different sized uniform random samples of
various groups in the relation. Consider Figure 8. It shows
a five column table on which the user poses the query ¢
(Figure 7). Let SampRel be a biased sample of relation
Rel, and let the groups {A = ay,B = 0,C = ¢} and
{A=a,,B =b,C = ;) be represented in SampRel by a 1%
and 2% sample respectively. Since both groups contribute
to the group {A = a;, B = b;) in the answer for G2, we
have a non-uniform sample from which we must produce an
approximate answer. This raises the concern that we may
not be able to extract an unbiased estimator for the sum for
this group.

However, using standard techniques for estimators based
on stratified samples, we can generate an unbiased answer
using all the tuples in the biased sample [Coc77). For each
tuple, let its scale factor ScaleFactor be the inverse of the
sampling rate for its strata. For the sum operator, we scale

(RJAJBICHQISF]
{a) SampRel schema

select A,B, sum(Q*SF)
from SampRel
group by A.B;

(b) Rewritten Query Q2
Figure 8: Integrated Rewriiing

| K
{a

select SR.A, SR.B, sum(QsSF)

from SampRel SR, AuxRel AR

vhere SR.A = AR.A and SR.B = AR.B and SR.C = AR.C
group by SR.A, SR.B;

IAIBIORQ]
SampRel schema

(b} AuxRel schema

{c) Rewritten query @,
Figure 9: Normalized Rewriting

each value being summed by its Scale Factor, and then sum
the result. In query @:, for example, we would scale ¢1 by
100 and g2 by 50, and then add up the scaled sum. For
the COUNT operator, we sum up the individual Scalefactors
of each tuple satisfying the query predicate. For the ava
operator, we compute the scaled sUM divided by the scaled
COUNT.

Note that this approach is superior to subsampling all
groups down to a'common sampling rate in order to apply
techniques for uniform sampling. For example, if the
sampling rate for a group is 7 orders of magnitude smaller
than the sampling rate for other groups, then the relative
error bound for a COUNT operator using Heeflding bounds
can be 7/2 orders of magnitude worse.

5.2 Rewriting Strategies

We now consider various strategies for rewriting queries
to incorporate the scaling discussed above, using the
example of the SUM operator. Rewriting strategies for
other aggregate operators and error bounds can be derived
similarly and are presented in the full paper [AGP99b].

Note that all sample tuples belonging to a group will have
the same ScaleFactor. Thus, the key step in scaling is to be
able to efficiently associate each tuple with its corresponding
ScaleFactor. There are two approaches to doing this: a)
store the ScaleFactor [SF) with each tuple in SampRel and b)
use a separate table AuxRel to store the ScaleFactors for the
groups. These two approaches give rise to three techniques
described below.

The first approach is highlighted in Figure 8 The
rewrite technique, calied Integrated, incurs a space overhead
of storing the ScaleFactor and a multiplication operation
for every tuple. However, this approach incurs significant
maintenance overhead — insertion or deletion of tuples from
SampRel requires updating the Scalefuctor of all tuples in
the affected groups.

The second approach addresses the maintenance problem
by normalizing the SampRel table and is demonstrated
in technique Normalized shown in Figure 9. It has
only marginal maintenance overhead since the ScaleFactor
infermation is isclated to AuxRel and thus, updates to
SampRel requires updates only to AuxRel. Since the number
of groups would very likely be much fewer than the number
of tuples, AuxRel would have a lower cardinality than
SampRel. However, this approach has an execution time
penalty due to the join required between SampRel and
AuxRel. Morecover, the join condition can be non-trivial if

494

D
{b) RuxRel schema

{a) SampRel schema

select A,B, sum(Q*SF)

from SampRel, AuxRel

vhere SampRel.GID = AuxRel.GID
group by A,B;

(c) Rewritten Query Q2
Figure 10: Key-rnormalized Rewriting

[EfalB]ClQJsSK]
(a) SampRel schema

select A,B, sum{SQ#SF) :
from {select A, B, SF, sum(Q) as S0
from SampRel
group by A, B, SF)
group by A,B;

(b} Rewritten Query Qp
Figure 11: Nested-integrated Rewriting

there are many grouping attributes. The Hey-normalized
technique attempts to minimize this overhead. Since each
group is specified explicitly by the attributes values of
the grouping columns, they can be replaced by a unique
group identifier (GID)} as shown in Figure 10. Note that
this optimization still limits changes to the smaller Auxhel
relation during updates and also reduces the space overhead
of AuxRel.

In each of the above approaches, the SecaleFactor multi-
plication operation was performed for every tuple. How-
ever, since all tuples belonging to a group have the same
ScaleFactor, one can optimize further to first aggregate over
each group and then scale this aggregate appropriately by
the Scalefactor. This approach, however, requires a nested
group-by query. While applicable to all the three prior
techniques, for space limitations we show this optimization
in Figure 11 for Integrated rewriting and call it Nested-
integrated.

In Section 7, we compare the query execution speeds of
these four approaches.

6

In the full paper [AGP99b), we present one-pass algerithms
for constructing the various biased samples presented in
this paper. We also show how to maintain them in the
presence of insertions of new tuples into the relation, without
accessing the stored relation.

Computation and Maintenance

7

We conducted an extensive set of experiments to evaluate
the various sample allocation techniques and rewriting
strategies. The sampling allocation schemes studied were
House, Senate, Basic Congress, and Congress {Section 4).
The rewriting strategies studied were Integrated, Nested-
integrated, Normalized, and Key-normalized (Section 5). In
this section, we present a representative subset of the results
generated. They were chosen to show the tradeoffs among
these schemes. First, we describe the experimental testbed.
Then we perform experiments to measure the accuracy fo
the various sample allocation scheme. Finally, we study the
performance of the various rewriting strategies.

Experiments

["Attribute

T 1ad

[Lreturnflag | Llinestatus | Ishipdate

Lquaptity | l_extendedprice j

Data Type it (1,2,..} mt

[int

T date Hoat | float

Role of Attribute {| Pnmary Key

Grouping

Aggregation

Figure 12: The Lineitem Schema Used in the Experiments

[bg? l Qgs

1 @]

select [returnflag, Ilinestatus,
sum{l_quantity), sum({l_extendedprice)

from lineitem

greup by i_returnflag, llinestatus;

select lreturnflag, l.linestatus,

lshipdate, sum(l quantity)
from lineitem
group by lLreturnflag, Llinestatus, lshipdate;

select sum{Iquantity)
from lineitem
where (s < Lid < s+ ¢);

Table 1: Queries studied

7.1 Testbed

We ran the experiments en Agua, with Oracle {v7) as the
back-end DBMS. Aqua was enhanced to use the preposed
allocation schemes to compute its samples and also, the
different rewriting strategies.

7.1.1 Database and Queries

In our experiments, we used the database and queries sup-
plied with the TPC-D benchmark. The TPC-D benchmark
models a realistic business data warehouse, with sales daia
from the past six years. It contains a large central fact
table called lineitem and several much smaller dimension
tables [TPC99). As mentioned in Section 2, it is sufficient
to consider queries on a single relation to evaluate the pro-
posed techniques in Aqua. Hence, we restrict our discussion
to queries on the Yineiteitable. The schema of this table is
given in Figure 7,'® along with the grouping (dimensional)
and aggregation (measured) attributes. In all our experi-
ments.the Senate technique computes the samples for the
grouping on {l_returnflag, | linestatus, l_shipdate}.

Next, we extended the TPC-D data to model several
relevant aspects of realistic databases. Specifically, consider
the groups obtained by grouping the above relation on
all the three grouping attributes. In the original TPC-D
data, these groups were nearly identical in size. The data
in the aggregate attributes was also uniformly distributed.
In our experiments, we introduced desired levels of skew
inte the distributions of the group-sizes and the data in
the aggregated columns. This was done using the Zipf
distribution, which is known to accurately model several
real-life distributions. By changing the z-parameter of
the distribution from 0 to 1.5, we are able to generate
group-size distributions that are uniform (i.e., all sizes are
same) or progressively more skewed. We fixed the skew
in the aggregated column at z = 0.86, a commonly used
z-parameter because it results in a 90 — 10 distribution.
Finally, we also varied the number of groups in the relation
(from 10 to 200K). For a given number of groups, we
generated equal number of distinct {randemly chosen) values
in each of the grouping columns. Since the total number
of groups is the product of these counts, if the number of
groups is n, the number of distinct values in each of these
columns becomes n!/3.

The different parameters used in our experiments are
listed in Table 2. The size of the sample, determined by
parameter SP, is given as a percentage of the original

Y$The original 1ineitem table has some other columns which
are not relevant to this discussion. We introduced a l_id attribute
to the table ta use in the experiments.

495

[Parameter Range of Values | Defauk |
Table Size (1) 100K — 6M tuples | 1M
Sample Percentage (SP) 1% - 75% (% 1) 7%
Num. Groups (NG) 10 — 200) 1000
Group-size Skew (2} 0-1.5 0.86

Table 2: Experiment Parameters

relation. In all our experiments, unless otherwise mentioned,
the parameter takes its default value listed in the table.

Queries: We used queries with diflerent number of
group-by columns. They are listed in the Table 1 (the
suffixes denote the number of group-bys in the queries).
The first two queries are derived from Query 3 in the
TPC-D query suite. The third query is parametrized to
generate queries with desired selectivities on different parts
of the data. Queries Qg and Qgs represent two ends of
the spectrum. The former poses the query over the entire
relation whereas the latter causes the finest partitioning
on three attributes. @ 2, with two grouping columns, is
in between the two extremes. The aim of this study is
to identify a scheme that can provide consistently good
performance for all the three classes and thus, the entire
range.

For the current study, we chose parameter s for Query
Qg0 randomly between 0 and 950K and fixed ¢ at 70K, and
generated 20 such queries. Hence, each guery selects about
70K tuples, i.e., 7% of the table when T is 1M.

7.2 Accuracy of Sample Allocation
Strategies

In this section, we first compare the accuracies of various
sample allocation strategies for group-by and non-group-
by queries. Then, we study the sensitivity of the various
sampling schemes to size of the sample. In each case,
we compute the exact as well as approximate answers for
queries @2, Qgs, and each of the queries in the set Qgo.
For Q.2 and @Qga, we define the error as the average of the
percentage errors for all the groups. For the query set Qgo,
we define error as the average of the percentage errors for
all the gueries. In both cases, the error for a single group
is computed using Eq. 1 {Section 3). We also measured the
maximum errors and observed that the relative performance
of all the techniques was identical to the above average error
measures.

7.2.1 Performance for Different Query Sets

In this experiment, we fix the sample percentage at 7% and
study the accuracy of various allocation sirategies for the
three classes of queries. Since each query set aggregates over

20 =

House Bas-Cong Cong Senate

Pigure 13: Query Qg Error

a different set of groups, intuitively, we expact the technique
that allocates equal space to those groups to have the least
error. Note that, when all the groups are of the same size
(i.e., z = 0), all the techniques result in the same allocation,
which is a uniform sample of the data. Hence, we discuss
the results for the case of skewed group sizes (with z = 1.5}
below.

Queries with No Group-bys (Qq0) (Figure 13): Recall
that Qg consists of queries selecting uniformly over the
entire data. Since Senate allocates the same space for each
group, it ends up allocating less space for the large groups
than the other technigques. This results in a higher overall
error for Senate because a large proportion of the queries

-land in the large groups. The other techniques perform
better because one of their considerations is allocating space
uniformly over the entire data. The result is that the space
allocation mirrors the queries, and all queries are answered
well. The relative performance of these three techniques is
deternmined by the weight they give to this consideration —
highest™in House where it is the sole consideration to the
least in Basic Congress whose space allocation is skewed
towards the small groups. Surprisingly, Congress’s errors
are low too and it is a good match for House.

Queries with Three Group-Bys (Q4) {Figure 14):
Recall that @43 consists of aggregating over all groups at the
finest granularity of grouping. This is precisely the grouping
for which the Senate sampling was set up giving equal space
to each of these groups. Hence, Senate has low errors for all
the groups resulting in an overall good performance. On the
other hand, House allocates a large part of the space to the
few large groups and incurs high errors for the remaining
smaller groups. Once again, Basic Congress and Congress
perform in between these two ranges because they take into
account small groups, but to a Iesser extent than Senate.

Queries with Two Group-Bys {Q,2) (Figure 15):
This is the intermediate case of grouping on iwo attributes.
Both House and Senale perform poorly since they are
designed for the two extremes. The absolule magnitude of
the error in this case, however, is significantly lower than
the last two sets due to the larger size of the groups — both
House and Senate contain enough tuples from each group
to produce reasonable estimates. The Congress technique
easily outperforms them because it is tailored for this case
and explicitly considers this grouping in its allocation. Thus,
its allocation is close to the ideal for this query set.

Conclusions: It is clear from the above experiments
that only Congress performs consistently the best or close
to best for queries of all types. The other techniques
perforin well only in a limited part of the spectrum, and
thus, are not suitable in practice where a whole range of

496

10 4
i
e
£
=
® 54
[
House Bas-Ceng Cong Senate House Bas-Cong Cong Senate
Figure 14: Query (43 Error Figure 15: Query (J42 Error
40 <«
"\ -+ House
"\ —O— Senale
N —m— Basic-Congress
307 N —a=Congress .
5
&
8
10
0 T ¥
0 2 4 6 g 10

Sample Percentage
Figure 16: Sample Size vs. Accuracy {Query Qg2)

groupings may be of interest to the user during the roll-up
and drill-down process. The Congress technique performs
well because it 1s not optimized for a particular grouping set
but instead takes into consideration all possible groupings
{including no-groupings at all) in its space allocation. Thus,
even in cases where it is not the best, it is extremely
competitive. Consequently, we propose Congress as the
sampling technique of choice.

7.2.2 Effect of Sample Size

In this experiment we perform a sensibivity analysis test
by fixing the group-size skew at 0.86 and measure the
errors incurred in answering Query ggz by various allocation
schemes for different sample sizes. The results are plotted
in Figure 16. As expected, the errors drop as more space is
allocated to store the samples. The errors for House flatten
because it simply allocates more of the available space to the
larger groups, which does little to improve the performance
for the remaining groups. Overall, the behavior of Congress
is very encouraging because its errors drop rapidly with
increasing sample space. Consequently, it is able to provide
high accuracies even for the arbitrary group-by queries.

7.3 Performance of Rewriting Strategies
In these experiments, we measure the actual time taken by
each of the four rewriting strategies presented Section 5.
We present the time in seconds for running Qg and writing
the result into another relation. The experiments were run
on a Sun Sparc-20 with 256MB of memory, and 10G B of
disk space running Solaris 2.5. We focus on the effects of
sample size and the number of groups because they almost
entirely determine the perfermance of the rewrite strategies.

Sample Percentage
Technique 1% [5% 10%
Integraied 1.3 | 3.8 6.8
Nested-integrated | 1.2 ; 3.3 6.0
Normalized 1.7 | 14.0 | 27.3
Key-normalized 1.8 | 143 | 284

Table 3: Times Taken for Different Sample Percentages
factual query time = 40sec)

To mitigate the effects of startup and caching, we ran the
queries five times and report the average execution times of
the last four runs. We present our experiments on sample
size; the experiments cn the number of groups can be found
in the full paper {AGP99b].

Effect of Sample Size on Rewrite Performance:
In this experiment, we fix the number of groups at 1000
and vary the sample percentage. Table 3 shows the times
taken by various rewrite strategies for different sample
percentages. Running the same query on the original table
data took 40 seconds on the average. The table makes two
points: a) the Integrated-based techniques outperform the
Normalized-based techniques and b) the rise in execution
times are dramatic for the Normalized-based techniques with
increasing sample sizes.

Normalized and Hey-normalized perform poorly due to
the join between the sample table and aunxiliary table.
Among them, the slightly better performance of Key-
normalized is due to a shorter join predicate involving
Just one attribute (1id), as against two (lreturnflag and
Llinestatus} for Normalized. Among Integrated and Nested-
tnitegrated, quite surprisingly, the latter performed consis-
tently better in spite of being a nested query. The fewer
muitiplications with the scalefactor performed by Nesited-
integrated (one per group) pays off over Integrated which
dees one multiplication per tuple. We explore this tradeoff
in more detail in the full paper. Overall, solely from the
performance viewpoint, these two techniques are still signif-
icantly faster than the normalized ones.

Summary of Rewriting Strategies: Our experiments
show that Integrated and Nested-integrated have consisient
performance over a wide spectrum of sample sizes and group
connts and easily outperform the other two techniques.
However, as pointed out in Section 5, they incur higher
maintenance costs (which we do not study here). Hence,
the choice of a technique depends on the update frequency
of the warehouse environment. If the update frequencies are
moderate to rare, Mmtegrated (or Nested-integrated) shonld be
the technigue(s) of choice. Only the (rare) high frequency
update case warrants for the higher execution times incurred
by Key-normalized— note that as the warehouse grows larger
relative to the sample, the prabability of an update reflecting
immediately in the sample shrinks significantly, making this
an unlikely case in practice.

8

In this section, we summarize some extensions to Congres-
sicnal samples to use different biasing criteria derived from
the data and to non-Group-by queries. Details are in the
full paper [AGP99b).

Generalization to Multiple Criteria: One of the
key features of congressional samples is its extensibility to
different space allocation criteria beyond those studied in

Extensions

497

Grogping Congressional
Attributes = Weight Vectors - Sample
A B Unscalad Scaled

Cl} CW
l N l @

Figure 17: Congressional samples framework

this paper. Consider Figure 17. It shows a typical structure
of the table that is used to determine space allocation in
a congressional sample similar to that in Figure 5. Note
that there are three classes on columns. The ones on the
left are the attribute columns which contain the possible
groups in some order. The columns in the middle, that
we refer to as weighl vectors, contain for soine criteria,
the relative ratios of space, or weighis, to be allocated to
each of the groups {e.g., in proporticn to the variances of
the groups). For example, in Figure 5, House and Senate
strategies contributed a weight vector each. The last two
columns aggregate the space allocated by each of the weight
vectors to generate the final number of tuples assigned for
each group.

Generalization to Other Queries: The Congressional
Samples framework can also be extended beyond group-by
queries. A group-by query simply partitions the attribute
space based on specific attribute values. However, one may
also consider other partitions of the space such as ranges of
values, where the user has a biased interest in some of the
partitions. For example, if a sample of the sales data were
used to analyze the impact of a recent sales promotion, the
sample would be more effective if the most recent sales data
were better represented in the sample as opposed to older
data. This can be easily achieved in the above framework
by replacing the values in the grouping columns by distinct
ranges (in this case on dates) and deriving the weight vectors
that weigh the ranges appropriately with respect to cach
other.

2 Related Work

While statistical techniques based on samples, histograms,
etc. have been applied in databases for a while now, they
have been primarily used in selectivity estimation during
query optimization [SAC*79, O1k93, PIHS96]. Approximate
query answering using sampling has started receiving atten-
tion recently [Olk93, HHW97, GM398, AGPR99)]. The closesi
work to ours is the Online Aggregaiion scheme proposed by
Hellerstein e¢ al [HHW97]. In their approach, the original
data is scanned in random order at query time to generate
increasingly larger random samples of the data, thus incre-
mentally refining the approximate answer generated. Un-
like Agua, that work involves accessing original disk-resident
data at query time; but it has the desirable feature of ulti-
mately providing the fully accurate answer. However, both
approaches encounter similar problems in answering group-
by queries effectively. Thelr solubion is to use the novel
the index striding technique to control sampling rate among
groups and thus ensure fairness among their qualities. Their
approach is not suitable for the precomputed or materialized
samples considered in this paper.

There have been several recent works using histograms [IP99]

or wavelets [VW99] for approximate query answering.
Efficient processing and optimization of aggregate group-
by queries has been addressed in [CS94, CS95]. Their

technigues are orthogonal to our approach of reducing the
data size itself and can be used in Aqua to further speed up
group-by query processing.

Biased sampling (e.g., stratified sampling) has been stud-
ied in the sampling literature under many contexts {Coc77].
Most related is the work on subpopulation sampling, in
which a population is partitioned into subsets {analogous
to groups in a group-by query}, and on-the-fly sampling is
used to estimate the mean or other statistic over each sub-
population, as well as over the entire population. This paper
is the first to consider the use of precomputed biased sam-
ples for approximate query answering of group-by queries,
and extends the previous work by studying combinations
of group-by columus, construction and incremental mainte-
nance, query rewriting, opiimizing over a range of possible
queries, and performance on the TPC.D benchmark data.

10 Conclusions

The growing popularity of OLAP and data warehousing
has highlighted the need for approximate query answering
sysiems. These systems offer high performance by answering
queries from compact summary statistics, typically uniform
random samples, of the data. Needless to say, it is critical
in such systems to provide reasonably accurate answers to
the commonly posed queries.

In this paper, we showed that precomputed uniform ran-
dom samples are not sufficient to accurately answer group-
by quertes, which fortn the basis of most of the data analy-
sis in decision support systems. We demonstrated that, to
be effeciive for group-by queries, the data should be sam-
pled non-uniformly, and proposed several new techniques
based on this biagsed sampling. We developed techniques for
minimizing errors over queries on a set of possible group-
ing columns. We introduced congressional samples, which
are effective for group-by queries with arbitrary group-bys
(including none). Additionally, we proposed efficient tech-
niques for comstructing congressional samples in one pass
over the relation, and for incrementally maintaining them
in the presence of database insertions, without accessing the
stored relation. We also presented efficient strategies for us-
ing the biased samples. The new sampling strategies were
validated experimentally both in their ability to produce ac-
curate estimates to group-by queries and in their execution
efficiency.

All of the techniques presented in this paper have been
mncorporated into an approximate query answering system,
called Aqua, that we have developed. By providing the
ability to answer the important class of group-by queries,
our new techniques have significantly enhanced the overall
accuracy and usability of Aqua as a viable decision support
system. Of course, the techniques themseclves are applicable
beyond Agua, and even beyond group-by queries, and can
be used wherever the studied limitations of uniform random
samples become critical.

Acknowledgements

Sridhar Ramaswamy was one of the designers and imple-
mentors of the Aqua prototype. We also thank him for dis-
cussions related to this work.

References

[AGP99&] 3. Acharya, P. B. Gibbons, and V. Poosala. Aqua: A
fast decision support system using approximate query
answers. In Proc. 25th International Conf on Very
Large Databases, pages T54-757, September 1999,
Demo paper.

498

[AGPo9b] S. Acharya, P. B. Gibbons, and V. Poosala. Congres-
sional samples for approximate answering of group-by
queries. Technical report, Bell Laboratories, Murray
Hill, New Jersey, November 1989.

S. Acharya, P. B. Gibbons, V. Pcosala, and 5. Ra-
maswamy. Join synopses for approximate query
answering. In Proc. ACM SIGMOD International
Conf. on Management of Data, pages 275-286, June
1999,

5. Chaudhuri and U. Dayal. An overview of data ware-
housing and OLAP technology. SIGMOD Record,
26(1):65-74, 1997.

3. Chaudhuri, R. Motwani, and V. Narasayya. On
random sampling over joins. In Prec. ACM SIGMOD
International Conf. on Management of Data, pages
263-274, June 1999,

W. G. Cochran. Sampling Technigues. John Wiley &
Sons, New York, third edition, 1977.

3. Chaudhuri and K. Shim. Including greup-by
it query optimization. In Proc. 20th Internatioral
Conf. on Very Large Data Bases, pages 354-366,
September 1994.

‘S. Chaudhuri and K. Shim. An overview of cost-based
optimization of queries with aggregates. IEEE Data
Engineering Bulletin, 18(3):3-9, 1995.

P. B. Gibbons and Y. Matias. New sampling-based
summary statistics for improving approximate query
answers. In Proc. ACM SIGMOU I[nternationa!
Conf. on Management of Data, pages 331-342, June
1998.

P. Haas and 1. Hellerstein. Ripple joins for online
aggregation. In Proc. ACM SIGMOLD International
Clonf. on Management of Data, pages 287298, June
1999,

J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In Proc. ACM SIGMOD Iniernational
Conf. on Mansgement of Data, pages 171-182, May
1997.

Y. lIoannidis and V. Poosala. Histogram-based tech-
niques for approximating set-valued query-answers.
In Proc. 25th International Gonf. on Very Large
Databases, pages 174185, September 1999,

R. Kimball. The Data Warehouse Tookit. John Wiley
and Sons Inc., 1996.

F. Olken. Random Sampling from Databases. PhD
thesis, Computer Science, U.C. Berkeley, April 1993.

V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J.
Shekita. Improved histograms for selectivity estima-
tion of range predicates. In Proc, ACM SIGMOD
International Conf. on Management of Dala, pages
294-305, June 1996,

P. G. Selinger, M. M. Astrahan, . D. Chamberlin,
R. A. Lorie, and T. T. Price. Access path selec-
tion in a relational database management system. In
FProc. ACM SIGMOUD International Conf. on Man-
agement of Data, pages 23-34, June 1979.

D. Schneider. The ins & outs (and everything
in between) of data warehousing. Tutorial in the
28rd International Conf. on Very Large Data Bases,
August 1997,

Transaction processing performance council {TPC).
TPC-D Benchmark Version 2.0, February 1999.
URL: www.tpc.org.

{AGPROg]

[CDa7)
[CMN9g]
[Coc?7]
{Cs94)

[cs9s)

{GM98]

[HHS9]

[HHW97)

(TP99]

{Kim96]
[O1ka3)

{PIHS96]

[SACHT9)

[Sch97)

[TPCog]

[vwag] J. 8. Vitter and M. Wang. Approximate computation
of multidimensional aggregates of sparse data using
wavelets. In Proc. ACM SIGMO[D International
Conf. on Management of Dala, pages 193-204, June

1999.

