|
|
Where:
2L 1 εi = ---- × -------- × ε (see: click here) 2i 4(L+1) |
Let B1, B2, ..., Bs be the best active blocks that covers the current window Let A1, A2, ..., As be their Quantile summaries Let ε1, ε2, ..., εs be their error parameters |
|
/* ------------------------------------------------------------------- QuantileQuery(Q, φ): look up the element at rank φN Q = window quantil constructed with the above algorithm NQ = N1 + N2 + ... + Ns φ = value between 0 and 1 ------------------------------------------------------------------- */ value QuantileQuery( ArasuQuantile Q, rank φ ) { /* ------------------------------------------------- NOTE: 1. Q is sorted !!! 2. each element in Q is assigned a weight ------------------------------------------------- */ find the element ek ∈ Q such that: 1. w1 + w2 + ... + wk-1 < φ(N1 + N2 + ... + Ns) 2. w1 + w2 + ... + wk-1 + wk ≥ φ(N1 + N2 + ... + Ns) return(ek); } |
![]() |
![]() |