|
|
NOTE:
|
|
E[ Y ] B = -------- E[ A ] |
The throughput depends on the number of transmission rounds inside one TD period
we find:
  E[A] = (E[X] + 1) × RTT . . . . . . . . . . . . . . . . (3a) |
where:
|
b E[X] = --- E[W] 2 |
b = number of delayed ACKs
Prob[ α = k] = Prob[ the first packet lost is packet #k ] = Prob[ first k-1 packets not lost and the next packet is lost ] = (1 - p)k-1 × p |
|
Notes:
E[M] = E[Yi1] + E[Yi2] + ... + E[Yi,ni] + 1 + 1 + ... + 1 | | | | +------------------------------+ +---------------+ sent in the TD periods sent in TO periods = E[Yi1] + E[Yi2] + ... + E[Yi,ni] + E[R] |
Notes:
E[S] = E[Ai1] + E[Ai2] + ... + E[Ai,ni] + E[ ZiTO] | | | | +------------------------------+ +--------+ lengths of the TD periods length of the TO period |
E[n] * E[Y] + E[R] TCP Throughput = ----------------------- E[n] * E[A] + E[Z] |
|
E[n] = average number of TD periods in one Reno cycle = 1 * P[ 1st TD period ends in Timeout recovery ] + 2 * P[ 2nd TD period ends in Timeout recovery ] + 3 * P[ 3rd TD period ends in Timeout recovery ] + 4 * P[ 4th TD period ends in Timeout recovery ] + ... = 1 * Q + 2 * (1-Q) * Q + 3 * (1-Q)2 * Q + 4 * (1-Q)3 * Q + ... = Q * ( 1 + 2 * (1-Q) + 3 * (1-Q)2 + 4 * (1-Q)3 + ... ) 1 = --- Q |
where:
|
|
Q = Q(1) * Prob[ W = 1 ] + Q(2) * Prob[ W = 2 ] + Q(3) * Prob[ W = 3 ] + Q(4) * Prob[ W = 4 ] + .... (upto infinity) . . . . . . . . . . . (6) |
Where:
|
|
Approximation:
Q = E[Q(W)] ≅ Q( E[W] ) . . . . . . . . . . . (7) |
In other words:
2 W W 2 3 p (3 - 3 p + p ) ((1 - p) - (1 - p) p - 2 + 3 p - 3 p + p ) Q(W) = -------------------------------------------------------------- ....... (5) W -1 + (1 - p) |
Replace W in the above equation with E[W] below:
-------------------------- / 2+b / 8(1-p) 2+b 2 E[W] = ----- + \ / -------- + ( ----- ) 3b \/ 3bp 3b |
E[R] = 1 * Prob[R=1] + 2 * 1 * Prob[R=2] + 3 * 1 * Prob[R=3] + ... = 1 * Prob[R=1] + 2 * Prob[R=2] + 3 * Prob[R=3] + ... |
Prob[ R = k ] = probability that there are k retransmission rounds = Prob[ ((k - 1) rounds unsuccessful) AND last round successful ] = pk-1 * (1 - p)1 |
E[R] = 1*Prob[R=1] + 2*Prob[R=2] + 3*Prob[R=3] + ... = 1 * (1-p) + 2 * p*(1-p) + 3 * p2*(1-p) + .... 1 = ------- 1 - p |
E[Z] = L1 * Prob[R=1] + L2 * Prob[R=2] + L3 * Prob[R=3] + ...
Using Maple: 2 3 4 5 6 1 + p +2 p + 4 p + 8 p + 16 p - 31 p E[Z] = TO ------------------------------------------ 1 - p |