

Performance Optimization:

Programming Guidelines and GPU Architecture Reasons Behind Them

Paulius Micikevicius

Developer Technology, NVIDIA

Goals of this Talk

Two-fold:

- Describe how hardware operates
- Show how hw operation translates to optimization advice
- Previous years' GTC Optimization talks had a different focus:
 - Show how to diagnose performance issues
 - Give optimization advice
- For a full complement of information, check out:
 - GTC 2010, GTC 2012 optimization talks
 - GTC 2013 profiling tool sessions:
 - \$3046, \$3011

Outline

- Thread (warp) execution
- Kernel execution
- Memory access
- Required parallelism

Requirements to Achieve Good GPU Performance

In order of importance:

- Expose Sufficient Parallelism
- Efficient Memory Access
- Efficient Instruction Execution

Thread/Warp Execution

SIMT Execution

Single Instruction Multiple Threads

- An instruction is issued for an entire warp
 - Warp = **32** consecutive threads
- Each thread carries out the operation on its own arguments

Warps and Threadblocks

- Threadblocks can be 1D, 2D, 3D
 - Dimensionality of thread IDs is purely a programmer convenience
 - HW "looks" at threads in 1D
- Consecutive 32 threads are grouped into a warp
 - 1D threadblock:
 - Warp 0: threads 0...31
 - Warp 1: threads 32...63
 - 2D/3D threadblocks
 - First, convert thread IDs from 2D/3D to 1D:
 - X is the fastest varying dimension, z is the slowest varying dimension
 - Then, same as for 1D blocks
- HW uses a discrete number of warps per threadblock
 - If block size isn't a multiple of warp size, some threads in the last warp are inactive
 - A warp is never split between different threadblocks

2013. NVIDIA

Warps and Threadblocks

- Threadblocks can be 1D, 2D, 3D
 - Dimensionality of thread IDs is purely a programmer convenience
 - HW "looks" at threads in 1D
- Consecutive 32 threads are grouped into a warp
 - 1D threadblock:
 - Warp 0: threads 0...31
 - Warp 1: threads 32...63
 - 2D/3D threadblocks
 - First, convert thread IDs fro
 X is the fastest varying dime
 - Then, same as for 1D blocks
- HW uses a discrete number
 - If block size isn't a multiple
 - A warp is never split between

Say, 40x2 threadblock (80 "app" threads)

40 threads in x

2 rows of threads in y

Warps and Threadblocks

- Threadblocks can be 1D, 2D, 3D
 - Dimensionality of thread IDs is purely a programmer convenience
 - HW "looks" at threads in 1D
- Consecutive 32 threads are grouped into a warp
 - 1D threadblock:
 - Warp 0: threads 0...31
 - Warp 1: threads 32...63
 - 2D/3D threadblocks
 - First, convert thread IDs fro
 X is the fastest varying dime
 - Then, same as for 1D blocks
- HW uses a discrete number
 - If block size isn't a multiple
 - A warp is never split between

Say, 40x2 threadblock (80 "app" threads)

40 threads in x

2 rows of threads in y

3 warps (92 "hw" threads)

1st (blue), 2nd (orange), 3rd (green)

note that half of the "green" warp isn't used by the app

Control Flow

- Different warps can execute entirely different code
 - No performance impact due to different control flow
 - Each warp maintains its own program counter
- If only a portion of a warp has to execute an operation
 - Threads that don't participate are "masked out"
 - Don't fetch operands, don't write output
 - Guarantees correctness
 - They still spend time in the instructions (don't execute something else)
- Conditional execution within a warp
 - If at least one thread needs to take a code path, entire warp takes that path

10

Control Flow

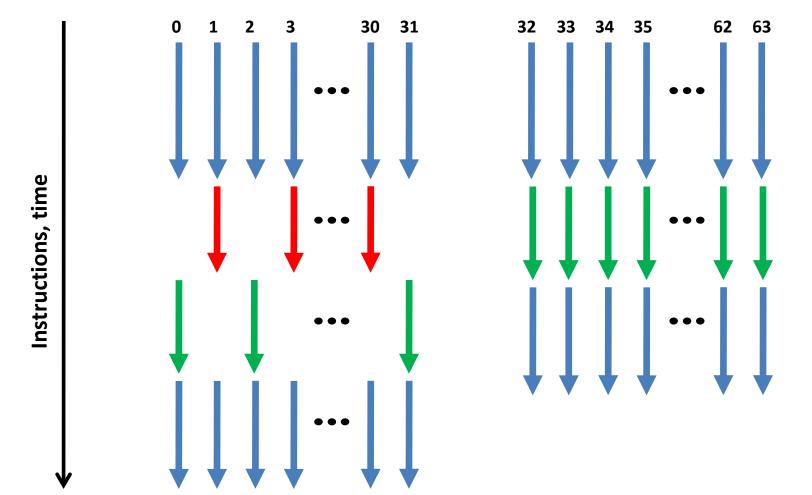
instructions

```
if ( ... )
  // then-clause
else
  // else-clause
```

Different Code Paths in Different Warps

31 34 Instructions, time Warp Warp ("vector" of threads) ("vector" of threads)

Different Code Paths Within a Warp



Instruction Issue

- Instructions are issued in-order
 - Compiler arranges the instruction sequence
 - If an instruction is not eligible, it stalls the warp
- An instruction is eligible for issue if both are true:
 - A pipeline is available for execution
 - Some pipelines need multiple cycles to issue a warp
 - All the arguments are ready
 - Argument isn't ready if a previous instruction hasn't yet produced it

2013, NVIDIA 14

Latency Hiding

to exec 1 instruction

- Instruction latencies:
 - Roughly 10-20 cycles (replays increase these)
 - DRAM accesses have higher latencies (400-800 cycles)
- Instruction Level Parallelism (ILP)
 - Independent instructions between two dependent ones
 - ILP depends on the code, done by the compiler
- Switching to a different warp
 - If a warp stalls for N cycles, having N other warps with eligible instructions keeps the SM going
 - Switching between concurrent warps has no overhead
 - State (registers, shared memory) is partitioned, not stored/restored

2013, NVIDIA 15

Latency Hiding

Instruction latencies:

- Roughly 10-20 cycles (replays increase these)

DRAM accesses have higher lateng

Instruction Level Parallelism (ILI

- Independent instructions betwee
- ILP depends on the code, done by

Switching to a different warp

 If a warp stalls for N cycles, having instructions keeps the SM going

```
FFMA R0, R43, R0, R4;

FFMA R1, R43, R4, R5;

FMUL R7, R9, R0;

FMUL R8, R9, R1;

ST.E [R2], R7;
```

- Switching between concurrent warps has no overhead
 - State (registers, shared memory) is partitioned, not stored/restored

2013. NVIDIA

Latency Hiding

Instruction latencies:

- Roughly 10-20 cycles (replays increase these)
- DRAM accesses have higher latencies (400-800 cycles)

Instruction Level Parallelism (ILP)

- Independent instructions between two dependent ones
- ILP depends on the code, done by the compiler

Switching to a different warp

- If a warp stalls for N cycles, having N other warps with eligible instructions keeps the SM going
- Switching between concurrent warps has no overhead
 - State (registers, shared memory) is partitioned, not stored/restored

2013, NVIDIA

Kepler Instruction Issue

- GPU consists of some number of SMs
 - Kepler chips: 1-14 SMs
- Each SM has 4 instruction scheduler units
 - Warps are partitioned among these units
 - Each unit keeps track of its warps and their eligibility to issue
- Each scheduler can dual-issue instructions from a warp
 - Resources and dependencies permitting
 - Thus, a Kepler SM could issue 8 warp-instructions in one cycle
 - 7 is the sustainable peak
 - 4-5 is pretty good for instruction-limited codes
 - Memory- or latency-bound codes by definition will achieve much lower IPC

18

Kepler Instruction Issue

Kepler SM needs at least 4 warps

- To occupy the 4 schedulers
- In practice you need many more to hide instruction latency
 - An SM can have up to 64 warps active
 - Warps can come from different threadblocks and different concurent kernels
 - HW doesn't really care: it keeps track of the instruction stream for each warp

For instruction limited codes:

- No ILP: 40 or more concurrent warps per SM
 - 4 schedulers × 10+ cycles of latency
- The more ILP, the fewer warps you need

Rough rule of thumb:

- Start with ~32 warps for SM, adjust from there
 - Most codes have some ILP

2013 NVIDIA 19

CUDA Cores and the Number of Threads

- Note that I haven't mentioned CUDA cores till now
 - GPU core = fp32 pipeline lane (192 per Kepler SM)
 - GPU core definition predates compute-capable GPUs
- Number of threads needed for good performance:
 - Not really tied to the number of CUDA cores
 - Need enough threads (warps) to hide latencies

2013, NVIDIA 20

© 2013, NVIDIA

GK110 SM Diagram

- 192 fp32 lanes (cores)
 - fp32 math
 - Simple int32 math (add,min,etc.)
- 64 fp64 lanes
- 32 SFU lanes
 - Int32 multiplies, etc.
 - Transcendentals
- 32 LD/ST lanes
 - GMEM, SMEM, LMEM accesses
- 16 TEX lanes
 - Texture access
 - Read-only GMEM access

Kepler SM Instruction Throughputs

Fp32 instructions

- Equivalent of "6 warps worth" of instructions per cycle (192 pipes)
- Requires some dual-issue to use all pipes:
 - SM can issue instructions from 4 warps per cycle (4 schedulers/SM)
 - Without any ILP one couldn't use more than 4*32=128 fp32 pipes

Fp64 pipelines

- Number depends on a chip
- Require 2 cycles to issue a warp
- K20 (gk110) chips: 2 warps worth of instructions per cycle (64 pipes)

Memory access

- Shared/global/local memory instructions
- 1 warp per cycle
- See the CUDA Programming Guide for more details (<u>docs.nvidia.com</u>)
 - Table "Throughput of Native Arithmetic Instructions"

22 2013. NVIDIA

Examining Assembly

- Two levels of assembly
 - PTX: virtual assembly
 - Forward-compatible
 - Driver will JIT to machine language
 - Can be inlined in your CUDA C code
 - Not the final, optimized machine code
 - Machine language:
 - Architecture specific (not forward/backward compatible)
 - The sequence of instructions that HW executes
- Sometimes it's interesting to examine the assembly
 - cuobjdump utility
 - comes with every CUDA toolkit
 - PTX: cuobjdump -ptx <executable or object file>
 - Machine assembly: cuobjdump -sass <executable or object file>
 - Docs on inlining PTX and instruction set
 - Look in the docs directory inside the toolkit install for PDFs

Takeaways

- Have enough warps to hide latency
 - Rough rule of thumb: initially aim for 32 warps/SM
 - Use profiling tools to tune performance afterwards
 - Don't think in terms of CUDA cores.
- If your code is instruction throughput limited:
 - When possible use operations that go to wider pipes
 - Use fp32 math instead of fp64, when feasible
 - Use intrinsics (__sinf(), __sqrtf(), ...)
 - Single HW instruction, rather than SW sequences of instructions
 - Tradeoff: slightly fewer bits of precision
 - For more details: CUDA Programming Guide
 - Minimize different control flow within warps (warp-divergence)
 - Only an issue if large portions of time are spent in divergent code

24

Kernel Execution

Kernel Execution

- A grid of threadblocks is launched
 - Kernel<<<1024,...>>>(...): grid of 1024 threadblocks
- Threadblocks are assigned to SMs
 - Assignment happens only if an SM has sufficient resources for the entire threadblock
 - Resources: registers, SMEM, warp slots
 - Threadblocks that haven't been assigned wait for resources to free up
 - The order in which threadblocks are assigned is not defined
 - Can and does vary between architectures
- Warps of a threadblock get partitioned among the 4 schedulers
 - Each scheduling unit keeps track of all its warps
 - In each cycle chooses an eligible warp for issue
 - Aims for fairness and performance

26

Concurrent Kernel Execution

- General stream rules apply calls may overlap if both are true:
 - Calls are issued to different, non-null streams
 - There is no synchronization between the two calls
- Kernel launch processing
 - First, assign all threadblocks of the "current" grid to SMs
 - If SM resources are still available, start assigning blocks from the "next" grid
 - "Next":
 - Compute capability 3.5: any kernel to a different stream that's not separated with a sync
 - Compute capability <3.5: the next kernel launch in code sequence
 - An <u>SM</u> can concurrently execute threadblocks from different kernels
 - Limits on concurrent kernels per GPU:

• CC 3.5: 32

• CC 2.x: 16

27 2013. NVIDIA

Kernel Execution in High Priority Streams

- Priorities require:
 - CC 3.5 or higher
 - CUDA 5.5 or higher
- High-priority kernel threadblocks will be assigned to SMs as soon as possible
 - Do not preempt already executing threadblocks
 - Wait for these to finish and free up SM resources
 - "Pass" the low-priority threadblocks waiting to be assigned
- Concurrent kernel requirements apply
 - Calls in the same stream still execute in sequence

CDP Kernel Execution

CUDA Dyn, Parallism

- Same as "regular" launches, except cases where a GPU thread waits for its launch to complete
 - GPU thread: kernel launch, device or stream sync call later
 - To prevent deadlock, the parent threadblock:
 - Is swapped out upon reaching the sync call
 - guarantees that child grid will execute
 - Is restored once all child threadblocks complete
 - Context store/restore adds some overhead
 - Register and SMEM contents must be written/read to GMEM
 - In general:
 - We guarantee forward progress for child grids
 - Implementation for the guarantee may change in the future
- A threadblock completes once all its child grids finish

Takeaways

- Ensure that grids have sufficient threadblocks to occupy the entire chip
 - Grid threadblocks are assigned to SMs
 - Each SM partitions threadblock warps among its 4 schedulers
 - SM needs sufficient warps to hide latency
- Concurrent kernels:
 - Help if individual grids are too small to fully utilize GPU
- Executing in high-priority streams:
 - Helps if certain kernels need preferred execution
- CUDA Dynamic Parallelism:
 - Be aware that a sync call after launching a kernel may cause a threadlbock state store/restore

2013, NVIDIA 30

Memory Access

Memory Optimization

Many algorithms are memory-limited

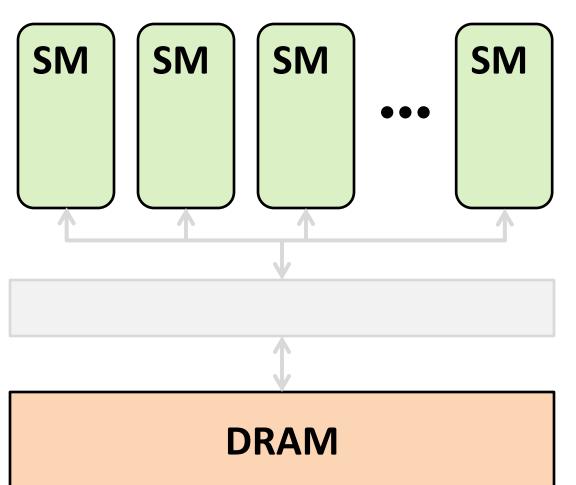
- Most are at least somewhat sensitive to memory bandwidth
- Reason: not that much arithmetic per byte accessed
 - Not uncommon for code to have ~1 operation per byte
 - Instr:mem bandwidth ratio for most modern processors is 4-10
 - CPUs and GPUs
- Exceptions exist: DGEMM, Mandelbrot, some Monte Carlo, etc.

Optimization goal: maximize bandwidth utilization

- Maximize the use of bytes that travel on the bus
- Have sufficient concurrent memory accesses

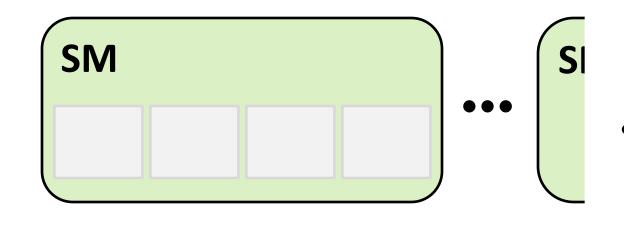
2013, NVIDIA 32

Maximize Byte Use



- Two things to keep in mind:
 - Memory accesses are per warp
 - Memory is accessed in discrete chunks
 - lines/segments
 - want to make sure that bytes that travel from DRAM to SMs get used
 - For that we should understand how memory system works
- Note: not that different from CPUs
 - x86 needs SSE/AVX memory instructions to maximize performance

GPU Memory System

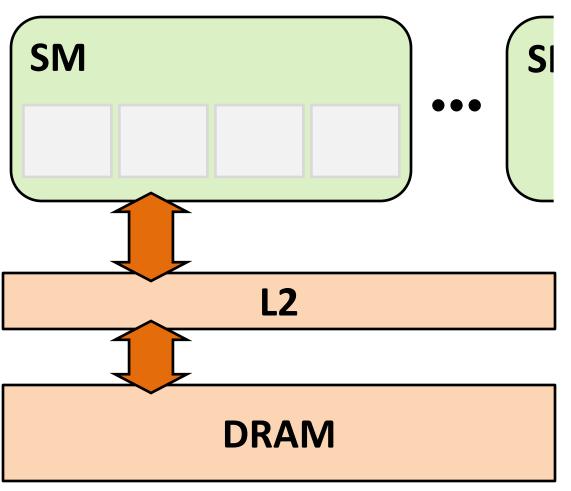


All data lives in DRAM

- Global memory
- Local memory
- Textures
- Constants

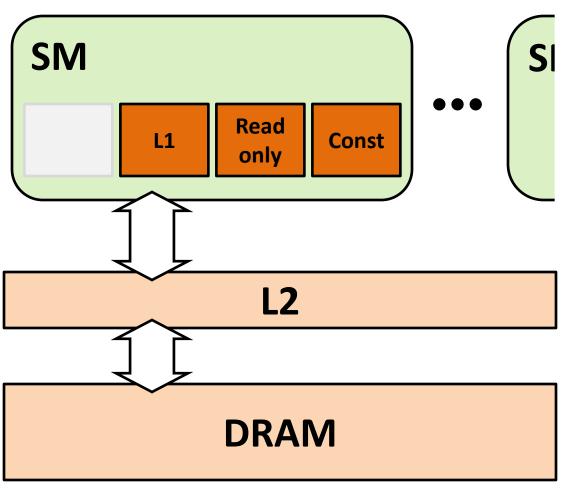
DRAM

GPU Memory System



- All DRAM accesses go through L2
- Including copies:
 - P2P
 - CPU-GPU

GPU Memory System



- Once in an SM, data goes into one of 3 caches/buffers
- Programmer's choice
 - L1 is the "default"
 - Read-only, Const require explicit code

Access Path

L1 path

- Global memory
 - Memory allocated with cudaMalloc()
 - Mapped CPU memory, peer GPU memory
 - Globally-scoped arrays qualified with __global___
- Local memory
 - allocation/access managed by compiler so we'll ignore

Read-only/TEX path

- Data in texture objects, CUDA arrays
- CC 3.5 and higher:
 - Global memory accessed via intrinsics (or specially qualified kernel arguments)

Constant path

Globally-scoped arrays qualified with ___constant___

Access Via L1

Natively supported word sizes per thread:

- 1B, 2B, 4B, 8B, 16B
 - Addresses must be aligned on word-size boundary
- Accessing types of other sizes will require multiple instructions

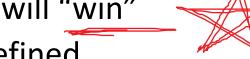
Accesses are processed per warp

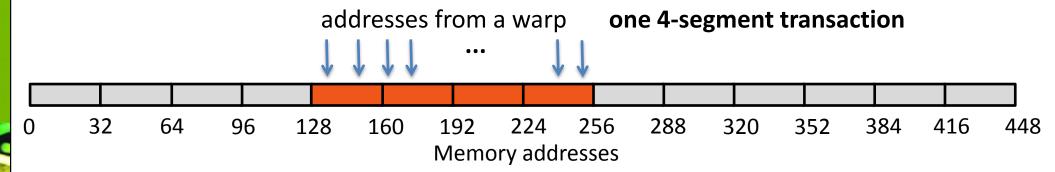
- Threads in a warp provide 32 addresses
 - Fewer if some threads are inactive
- HW converts addresses into memory transactions
 - Address pattern may require multiple transactions for an instruction
 - If **N** transactions are needed, there will be (**N-1**) replays of the instruction

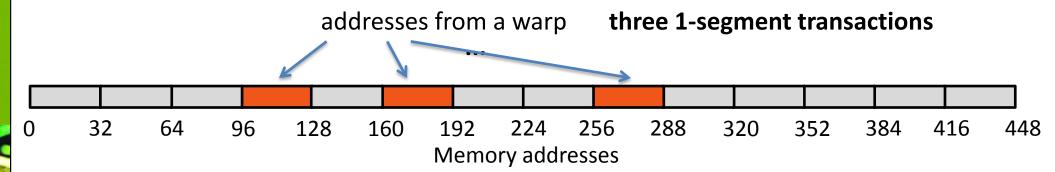
38

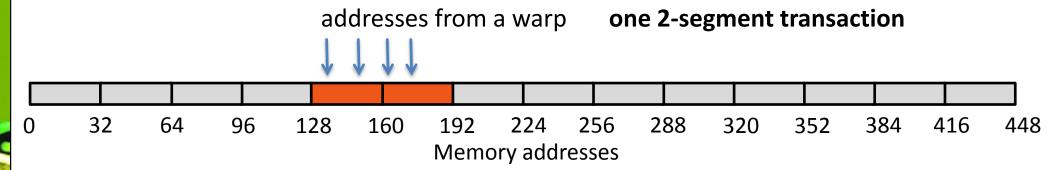
GMEM Writes

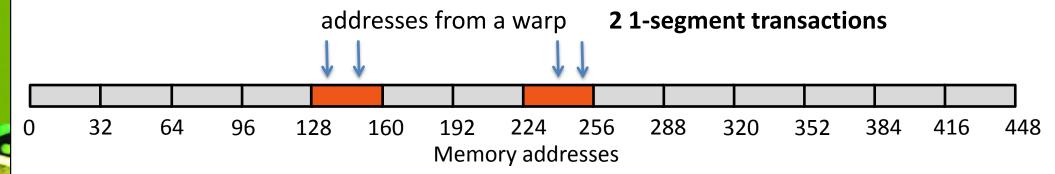
- Not cached in the SM
 - Invalidate the line in L1, go to L2
- Access is at 32 B segment granularity
- Transaction to memory: 1, 2, or 4 segments
 - Only the required segments will be sent
- If multiple threads in a warp write to the same address
 - One of the threads will "win"
 - Which one is not defined











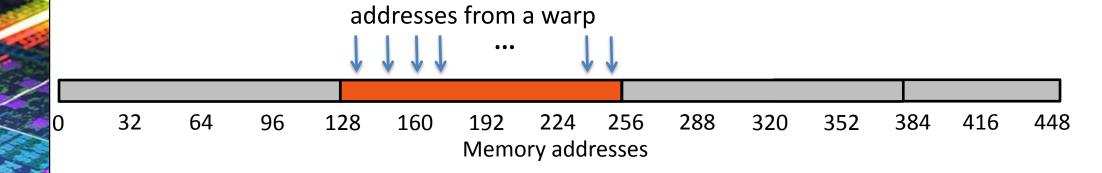
GMEM Reads

- Attempt to hit in L1 depends on programmer choice and compute capability
- HW ability to hit in L1:
 - CC 1.x: no L1
 - CC 2.x: can hit in L1
 - CC 3.0, 3.5: cannot hit in L1
 - L1 is used to cache LMEM (register spills, etc.), buffer reads
- Read instruction types
 - Caching:
 - Compiler option: -Xptxas -dlcm=ca
 - On L1 miss go to L2, on L2 miss go to DRAM
 - Transaction: 128 B line
 - Non-caching:
 - Compiler option: -Xptxas -dlcm=cg
 - Go directly to L2 (invalidate line in L1), on L2 miss go to DRAM
 - Transaction: 1, 2, 4 segments, segment = 32 B (same as for writes)

Caching Load

Scenario:

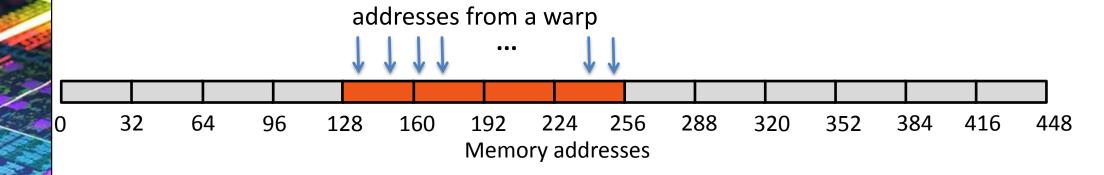
- Warp requests 32 aligned, consecutive 4-byte words
- Addresses fall within 1 cache-line
 - No replays
 - Bus utilization: 100%
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss



Non-caching Load

Scenario:

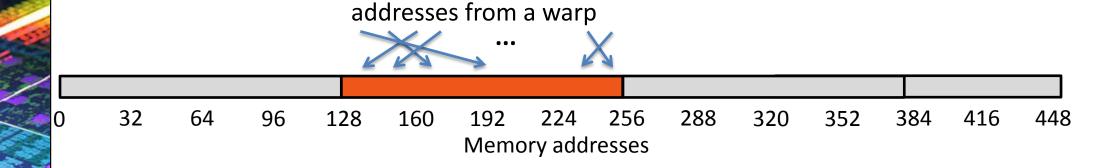
- Warp requests 32 aligned, consecutive 4-byte words
- Addresses fall within 4 segments
 - No replays
 - Bus utilization: 100%
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss



Caching Load

Scenario:

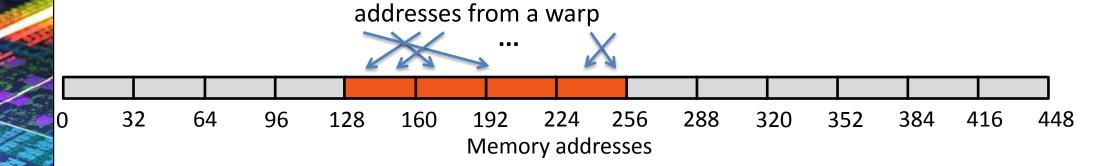
- Warp requests 32 aligned, permuted 4-byte words
- Addresses fall within 1 cache-line
 - No replays
 - Bus utilization: 100%
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss



Non-caching Load

Scenario:

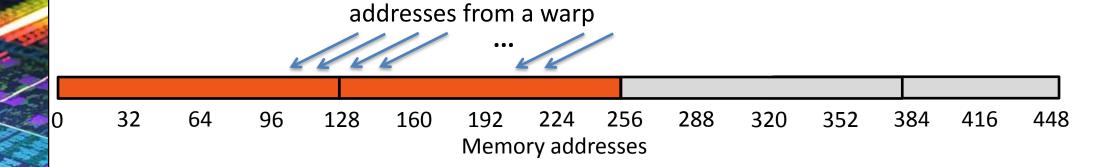
- Warp requests 32 aligned, permuted 4-byte words
- Addresses fall within 4 segments
 - No replays
 - Bus utilization: 100%
 - Warp needs 128 bytes
 - 128 bytes move across the bus on a miss



Caching Load

Scenario:

- Warp requests 32 consecutive 4-byte words, offset from perfect alignment
- Addresses fall within 2 cache-lines
 - 1 replay (2 transactions)
 - Bus utilization: 50%
 - Warp needs 128 bytes
 - 256 bytes move across the bus on misses



Non-caching Load

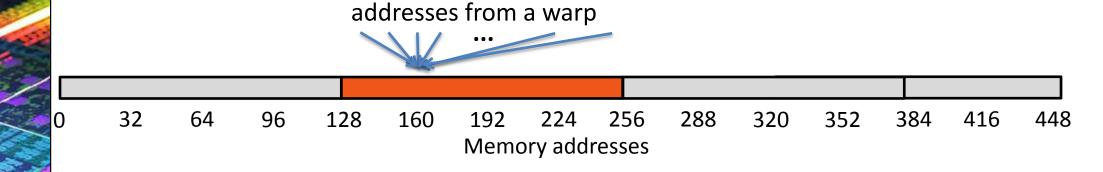
Scenario:

- Warp requests 32 consecutive 4-byte words, offset from perfect alignment
- Addresses fall within at most 5 segments
 - 1 replay (2 transactions)
 - Bus utilization: at least 80%
 - Warp needs 128 bytes
 - At most 160 bytes move across the bus
 - Some misaligned patterns will fall within 4 segments, so 100% utilization

Caching Load

Scenario:

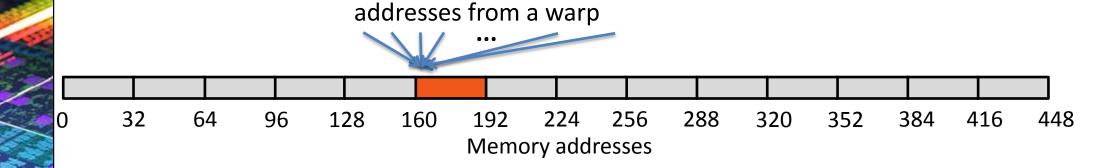
- All threads in a warp request the same 4-byte word
- Addresses fall within a single cache-line
 - No replays
 - Bus utilization: 3.125%
 - Warp needs 4 bytes
 - 128 bytes move across the bus on a miss



Non-caching Load

Scenario:

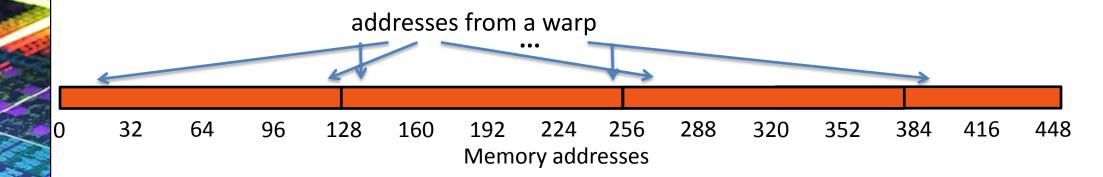
- All threads in a warp request the same 4-byte word
- Addresses fall within a single segment
 - No replays
 - Bus utilization: 12.5%
 - Warp needs 4 bytes
 - 32 bytes move across the bus on a miss



Caching Load

Scenario:

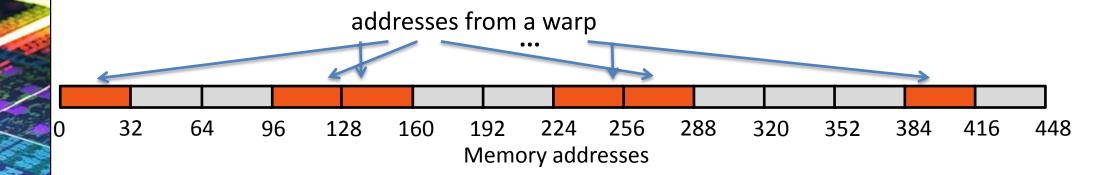
- Warp requests 32 scattered 4-byte words
- Addresses fall within N cache-lines
 - (N-1) replays (N transactions)
 - Bus utilization: 32*4B / (N*128B)
 - Warp needs 128 bytes
 - N*128 bytes move across the bus on a miss



Non-caching Load

Scenario:

- Warp requests 32 scattered 4-byte words
- Addresses fall within N segments
 - (N-1) replays (N transactions)
 - Could be lower some segments can be arranged into a single transaction
 - Bus utilization: 128 / (N*32) (4x higher than caching loads)
 - Warp needs 128 bytes
 - N*32 bytes move across the bus on a miss



Caching vs Non-caching Loads

- Compute capabilities that can hit in L1 (CC 2.x)
 - Caching loads are better if you count on hits
 - Non-caching loads are better if:
 - Warp address pattern is scattered
 - When kernel uses lots of LMEM (register spilling)
- Compute capabilities that cannot hit in L1 (CC 1.x, 3.0, 3.5)
 - Does not matter, all loads behave like non-caching
- In general, don't rely on GPU caches like you would on CPUs:
 - 100s of threads sharing the same L1
 - 1000s of threads sharing the same L2

L1 Sizing

- Fermi and Kepler GPUs split 64 KB RAM between L1 and SMEM
 - Fermi GPUs (CC 2.x): 16:48, 48:16
 - Kepler GPUs (CC 3.x):16:48, 48:16, 32:32
- Programmer can choose the split:
 - Default: 16 KB L1, 48 KB SMEM
 - Run-time API functions:
 - cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig()
 - Kernels that require different L1:SMEM sizing cannot run concurrently
- Making the choice:
 - Large L1 can help when using lots of LMEM (spilling registers)
 - Large SMEM can help if occupancy is limited by shared memory

56

Read-Only Cache

An alternative to L1 when accessing DRAM

- Also known as texture cache: all texture accesses use this cache
- CC 3.5 and higher also enable global memory accesses
 - Should not be used if a kernel reads and writes to the same addresses.

Comparing to L1:

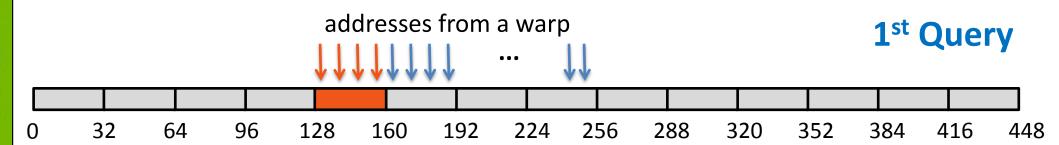
- Generally better for scattered reads than L1
 - Caching is at 32 B granularity (L1, when caching operates at 128 B granularity)
 - Does not require replay for multiple transactions (L1 does)
- Higher latency than L1 reads, also tends to increase register use

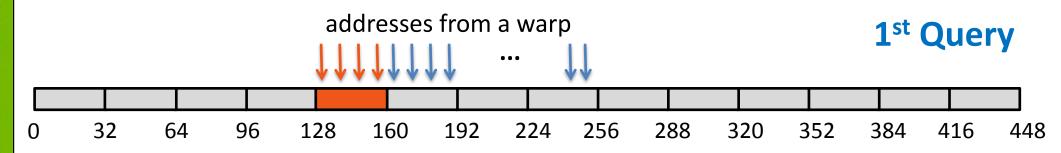
Aggregate 48 KB per SM: 4 12-KB caches

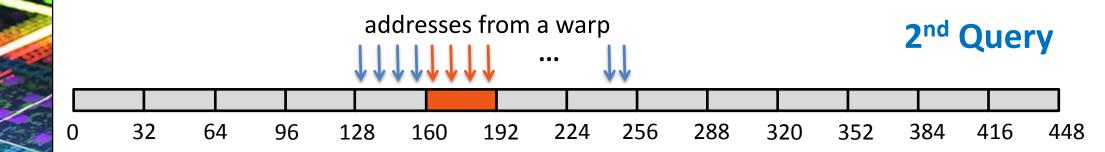
- One 12-KB cache per scheduler
 - Warps assigned to a scheduler refer to only that cache
- Caches are not coherent data replication is possible

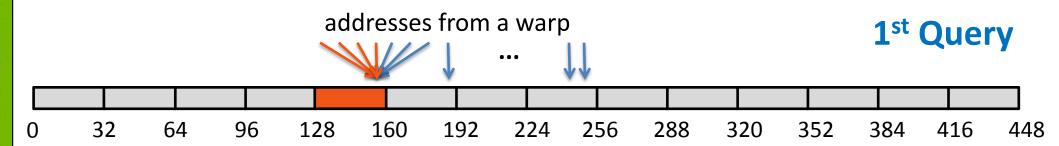
57

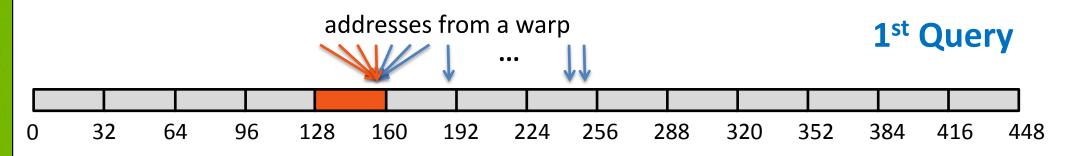
- Always attempts to hit
- Transaction size: 32 B queries
- Warp addresses are converted to queries 4 threads at a time
 - Thus a minimum of 8 queries per warp
 - If data within a 32-B segment is needed by multiple threads in a warp, segment misses at most once
- Additional functionality for texture objects
 - Interpolation, clamping, type conversion

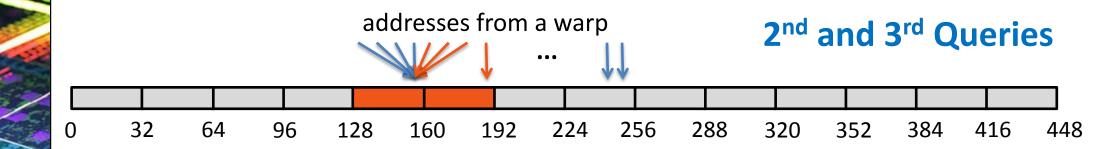


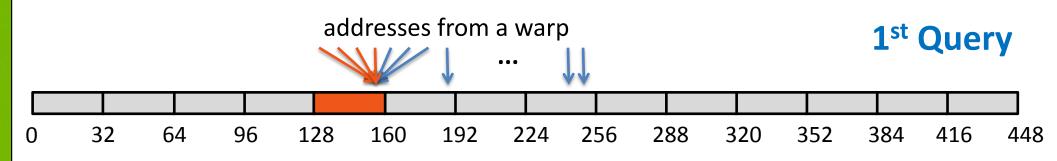


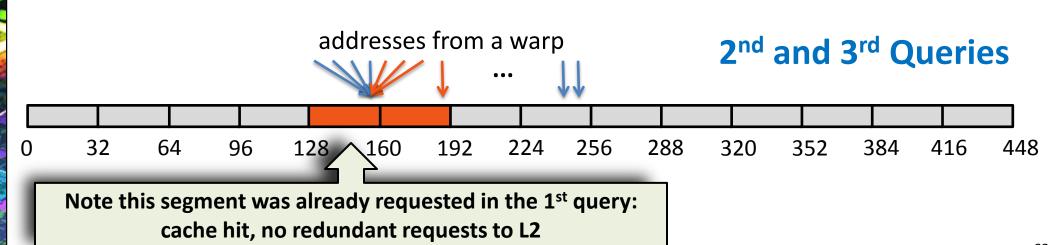












© 2013, NVIDIA

63

Accessing GMEM via Read-Only Cache

- Compiler must know that addresses read are not also written by the same kernel
- Two ways to achieve this
 - Intrinsic: __ldg()
 - Qualify the pointers to the kernel
 - All pointers: __restrict__
 - Pointers you'd like to dereference via read-only cache: const __restrict__
 - May not be sufficient if kernel passes these pointers to functions

Accessing GMEM via Read-Only Cache

- Compiler must know that addresses read are not also written by the same kernel
- Two ways to achieve this
 - Intrinsic: __ldg()
 - Qualify the pointers
 - All pointers: __restric
 - Pointers you'd like to
 - May not be sufficient

Accessing GMEM via Read-Only Cache

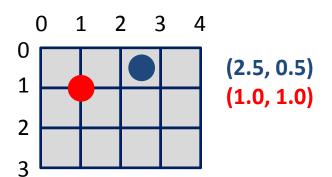
- Compiler must know that addresses read are not also written by the same kernel
- Two ways to achieve this
 - Intrinsic: __ldg()
 - Qualify the pointers
 - All pointers: __restric
 - Pointers you'd like to
 - May not be sufficient

Additional Texture Functionality

- All of these are "free"
 - Dedicated hardware
 - Must use CUDA texture objects
 - See CUDA Programming Guide for more details
 - Texture objects can interoperate graphics (OpenGL, DirectX)
- Out-of-bounds index handling: clamp or wrap-around
- Optional interpolation
 - Think: using fp indices for arrays
 - Linear, bilinear, trilinear
 - Interpolation weights are 9-bit
- Optional format conversion
 - {char, short, int, fp16} -> float

2013, NVIDIA 67

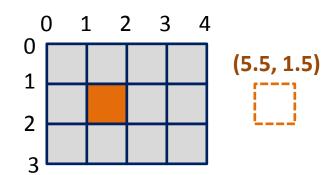
Examples of Texture Object Indexing



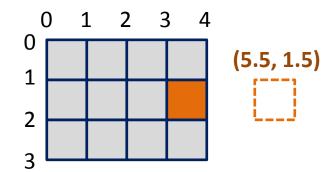
Integer indices fall between elements Optional interpolation:

Weights are determined by coordinate distance

Index Wrap:



Index Clamp:



Constant Cache

- The 3rd alternative DRAM access path
- Also the most restrictive:
 - Total data for this path is limited to 64 KB
 - Must be copied into an array qualified with __constant___
 - Cache throughput: 4 B per clock per SM
 - So, unless the entire warp reads the same address, replays are needed
- Useful when:
 - There is some small subset of data used by all threads
 - But it gets evicted from L1/Read-Only paths by reads of other data
 - Data addressing is not dependent on thread ID
 - Replays are expensive
- Example use: FD coefficients

Constant Cache

- The 3rd alternative DRAM access path
- Also the most restrictive?
 - Total data for this path is // global scope:
 - Cache throughput: 4 B pe
 - So, unless the entire war
- **Useful when:**
 - There is some small subs
 - But it gets evicted from I
 - Data addressing is not de
 - Replays are expensive
- **Example use: FD coefficie**

```
    Must be copied into an a __constant__ float coefficients[16];

                            // in GPU kernel code:
                            deriv = coefficients[0] * data[idx] + ...
                            // in CPU-code:
                            cudaMemcpyToSymbol(coefficients, ...)
```

70

Address Patterns

Coalesced address pattern

Warp utilizes all the bytes that move across the bus

Suboptimal address patterns

- Throughput from HW point of view is significantly higher than from app point of view
- Four general categories:
 - 1) Offset (not line-aligned) warp addresses
 - 2) Large strides between threads within a warp
 - 3) Each thread accesses a contiguous region (larger than a word)
 - 4) Irregular (scattered) addresses

See GTC 2012 "GPU Performance Analysis and Optimization" (session S0514) for details on diagnosing and remedies. Slides and video:

http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=S0514&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=#1450

2013, NVIDIA 71

Case Study 1: Contiguous Region per Thread

- Say we are reading a 12-byte structure per thread
 - Non-native word size

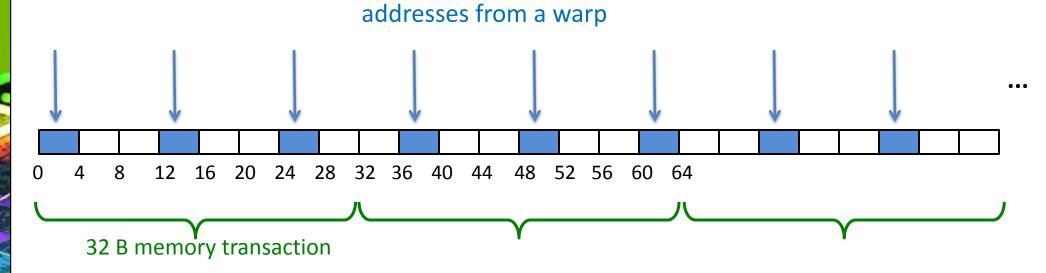
```
struct Position
{
    float x, y, z;
};
...
__global__ void kernel( Position *data, ... )
{
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    Position temp = data[idx];
    ...
}
```

2012, NVIDIA 72

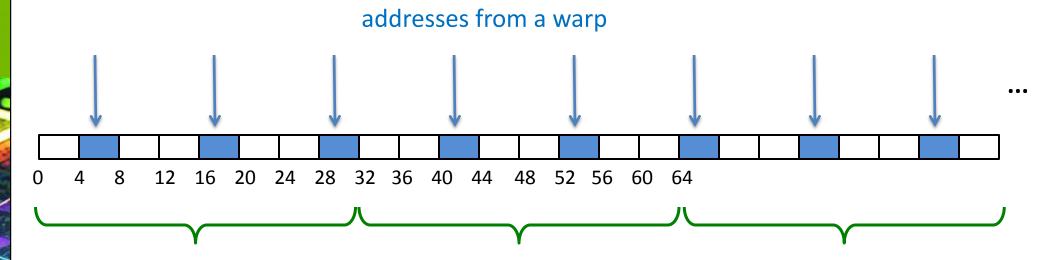
Case Study 1: Non-Native Word Size

- Compiler converts temp = data[idx] into 3 loads:
 - Each loads 4 bytes
 - Can't do an 8 and a 4 byte load: 12 bytes per element means that every other element wouldn't align the 8byte load on 8-byte boundary
- Addresses per warp for each of the loads:
 - Successive threads read 4 bytes at 12-byte stride

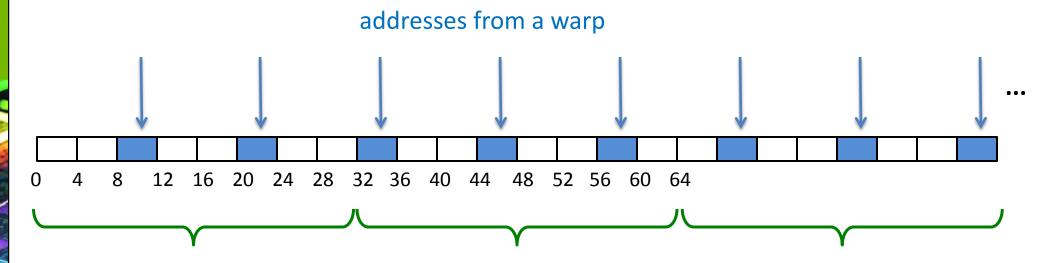
Case Study 1: 1st Load Instruction



Case Study 1: 2nd Load Instruction



Case Study 1: 3rd Load Instruction



Case Study 1: Performance and Solutions

- Because of the address pattern, SMs end up requesting 3x more bytes than application requests
 - We waste a lot of bandwidth
- Potential solutions:
 - Change data layout from array of structures to structure of arrays
 - In this case: 3 separate arrays of floats
 - The most reliable approach (also ideal for both CPUs and GPUs)
 - Use loads via read-only cache (LDG)
 - As long as lines survive in the cache, performance will be nearly optimal
 - Only available in CC 3.5 and later
 - Stage loads via shared memory (SMEM)

2012. NVIDIA 77

Case Study 1: Speedups for Various Solutions

Kernel that just reads that data:

AoS (float3): 1.00

– LDG: 1.43

- SMEM: 1.40

- SoA: 1.51

Kernel that just stores the data:

AoS (float3): 1.00

LDG: N/A (stores don't get cached in SM)

- SMEM: 1.88

- SoA: 1.88

Speedups aren't 3x because we are hitting in L2

DRAM didn't see a 3x increase in traffic

Maximize Memory Bandwidth Utilization

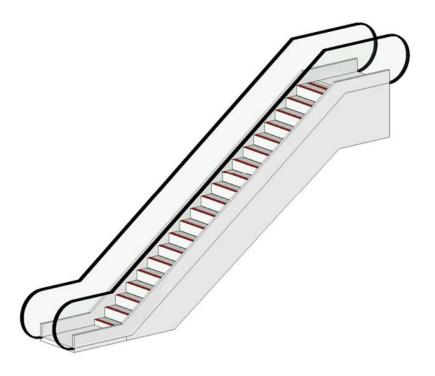
- Maximize the use of bytes that travel on the bus
 - Address pattern
- Have sufficient concurrent memory accesses
 - Latency hiding

Optimizing Access Concurrency

- Have enough concurrent accesses to saturate the bus
 - Little's law: need latency × bandwidth bytes in flight

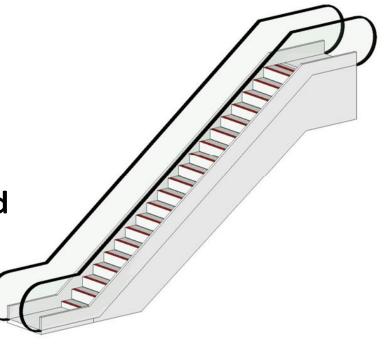
Little's Law for Escalators

- Say the parameters of our escalator are:
 - 1 person fits on each step
 - A step arrives every 2 seconds
 - Bandwidth: 0.5 person/s
 - 20 steps tall
 - Latency: 40 seconds



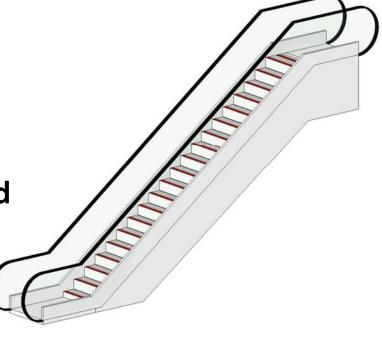
Little's Law for Escalators

- Say the parameters of our escalator are:
 - 1 person fits on each step
 - A step arrives every 2 seconds
 - Bandwidth: 0.5 person/s
 - 20 steps tall
 - Latency: 40 seconds
- 1 person in flight: 0.025 persons/s achieved



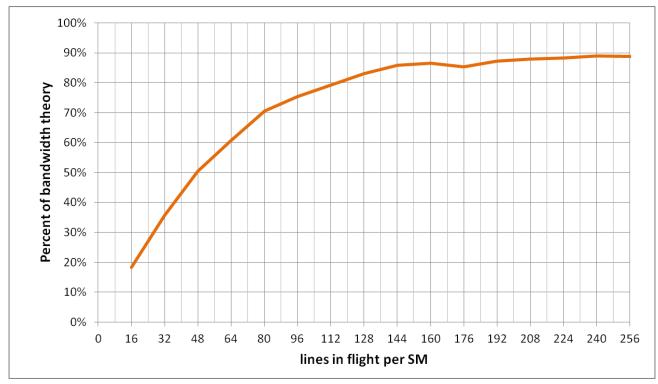
Little's Law for Escalators

- Say the parameters of our escalator are:
 - 1 person fits on each step
 - A step arrives every 2 seconds
 - Bandwidth: 0.5 person/s
 - 20 steps tall
 - Latency: 40 seconds
- 1 person in flight: 0.025 persons/s achieved
- To saturate bandwidth:
 - Need 1 person arriving every 2 s
 - Means we'll need 20 persons in flight
- The idea: Bandwidth × Latency
 - It takes latency time units for the first person to arrive
 - We need bandwidth persons get on the escalator every time unit



Having Sufficient Concurrent Accesses

 In order to saturate memory bandwidth, SM must issue enough independent memory requests



Optimizing Access Concurrency

- GK104, GK110 GPUs need ~100 lines in flight per SM
 - Each line is 128 bytes
 - Alternatively, ~400 32-byte segments in flight
- Ways to increase concurrent accesses:
 - Increase occupancy (run more warps concurrently)
 - Adjust threadblock dimensions
 - To maximize occupancy at given register and smem requirements
 - If occupancy is limited by registers per thread:
 - Reduce register count (-maxrregcount option, or __launch_bounds__)
 - Modify code to process several elements per thread
 - Doubling elements per thread doubles independent accesses per thread

Case Study 2: Increasing Concurrent Accesses

VTI RTM kernel (3D FDTD)

- Register and SMEM usage allows to run 42 warps per SM
- Initial threadblock size choice: 32x16
 - 16 warps per threadblock → 32 concurrent warps per SM
- Insufficient concurrent accesses limit performance:
 - Achieved mem throughput is only 37%
 - Memory-limied code (low arithmetic intensity)
 - Addresses are coalesced

Reduce threadblock size to 32x8

- 8 warps per threadblock \rightarrow 40 concurrent warps per SM
- 32→40 warps per SM: 1.25x more memory accesses in flight
- 1.28x speedup

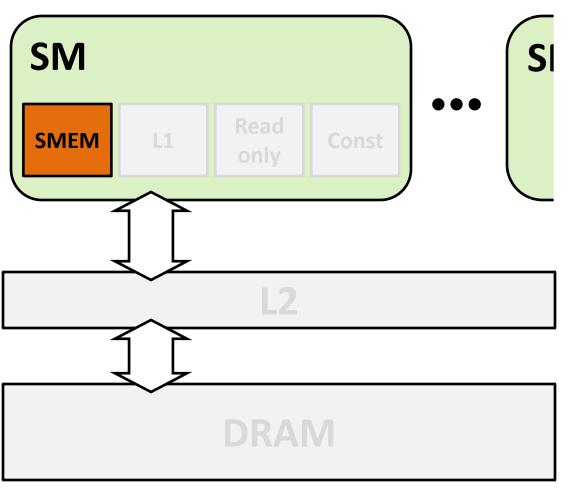
2013. NVIDIA 86

Takeaways

- Strive for address patterns that maximize the use of bytes that travel across the bus
 - Use the profiling tools to diagnose address patterns
 - Most recent tools will even point to code with poor address patterns
- Provide sufficient concurrent accesses

Shared memory

Shared Memory



Comparing to DRAM:

- 20-30x lower latency
- ~10x higher bandwidth
- Accessed at bankwidth granularity
 - Fermi: 4 bytes
 - Kepler: 8 bytes
 - GMEM granularity is either 32 or 128 bytes

Shared Memory Instruction Operation

- 32 threads in a warp provide addresses
 - HW determines into which 8-byte words addresses fall
- Reads: fetch the words, distribute the requested bytes among the threads
 - Multi-cast capable
 - Bank conflicts cause replays
- Writes:
 - Multiple threads writing the same address: one "wins"
 - Bank conflicts cause replays

Kepler Shared Memory Banking

32 banks, 8 bytes wide

- Bandwidth: 8 bytes per bank per clock per SM
- 256 bytes per clk per SM
- K20x: 2.6 TB/s aggregate across 14 SMs

Two modes:

- 4-byte access (default):
 - Maintains Fermi bank-conflict behavior exactly
 - Provides 8-byte bandwidth for certain access patterns
- 8-byte access:
 - Some access patterns with Fermi-specific padding may incur bank conflicts
 - Provides 8-byte bandwidth for all patterns (assuming 8-byte words)
- Selected with cudaDeviceSetSharedMemConfig() function

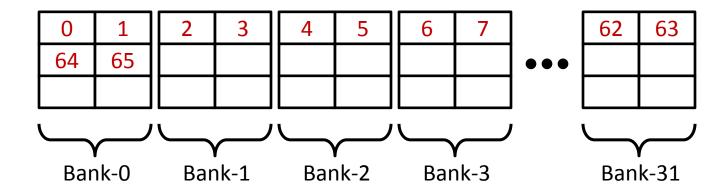
Kepler 8-byte Bank Mode

Mapping addresses to banks:

- Successive 8-byte words go to successive banks
- Bank index:
 - (8B word index) mod 32
 - (4B word index) mod (32*2)
 - (byte address) mod (32*8)
- Given the 8 least-significant address bits: ...BBBBBxxx
 - xxx selects the byte within an 8-byte word
 - BBBBB selects the bank
 - Higher bits select a "row" within a bank

Address Mapping in 8-byte Mode

(or 4B-word index)

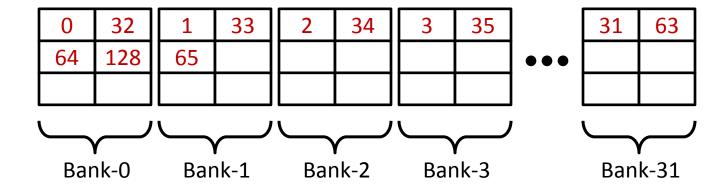


Kepler 4-byte Bank Mode

- Understanding this mapping details matters only if you're trying to get 8-byte throughput in 4-byte mode
 - For all else just think that you have 32 banks, 4-bytes wide
- Mapping addresses to banks:
 - Successive 4-byte words go to successive banks
 - We have to choose between two 4-byte "half-words" for each bank
 - "First" 32 4-byte words go to lower half-words
 - "Next" 32 4-byte words go to upper half-words
 - Given the 8 least-significant address bits: ...HBBBBBxx
 - xx selects the byte with a 4-byte word
 - BBBBB selects the bank
 - H selects the half-word within the bank
 - Higher bits select the "row" within a bank

Address Mapping in 4-byte Mode

(or 4B-word index)



Shared Memory Bank Conflicts

A bank conflict occurs when:

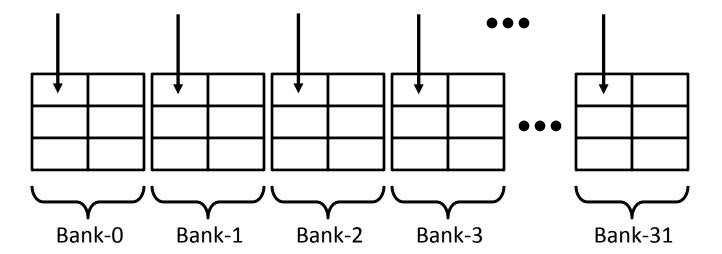
- 2 or more threads in a warp access different 8-B words in the same bank
 - Think: 2 or more threads access different "rows" in the same bank
- N-way bank conflict: N threads in a warp conflict
 - Instruction gets replayed (N-1) times: increases latency
 - Worst case: 32-way conflict \rightarrow 31 replays, latency comparable to DRAM

Note there is no bank conflict if:

- Several threads access the same word
- Several threads access different bytes of the same word

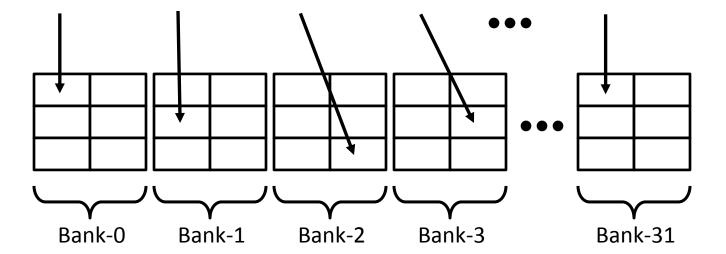
Addresses from a warp: no bank conflicts

One address access per bank



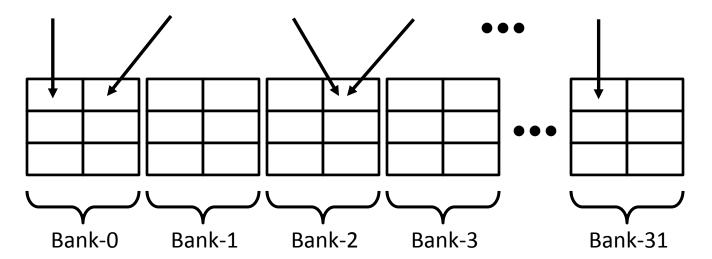
Addresses from a warp: no bank conflicts

One address access per bank



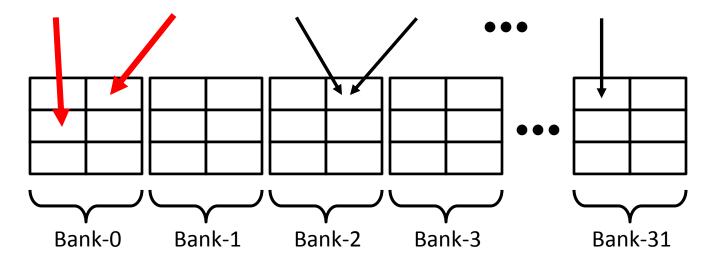
Addresses from a warp: no bank conflicts

Multiple addresses per bank, but within the same word



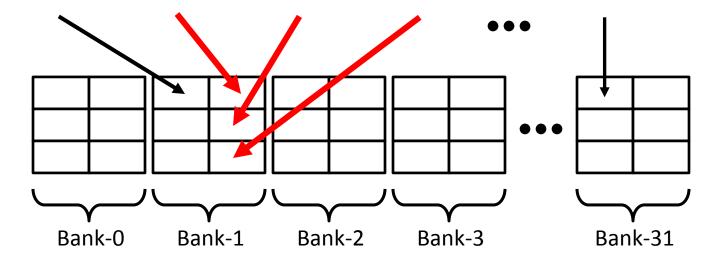
Addresses from a warp: 2-way bank conflict

2 accesses per bank, fall in two different words



Addresses from a warp: 3-way bank conflict

4 accesses per bank, fall in 3 different words



Staged via SMEM to coalesce GMEM addresses

- 32x32 threadblock, double-precision values
- 32x32 array in shared memory

Initial implementation:

- A warp reads a row of values from GMEM, writes to a row of SMEM
- Synchronize the threads in a block
- A warp reads a column of from SMEM, writes to a row in GMEM

- 32x32 SMEM array
- Warp accesses a column:
 - 32-way bank conflicts (threads in a warp access the same bank)

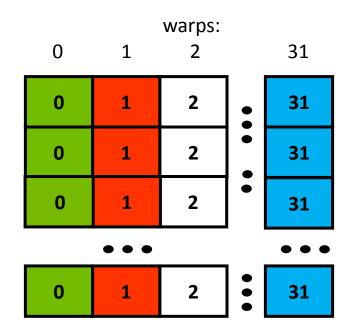
Number indentifies which warp is accessing data Color indicates in which bank data resides

Bank 0

Bank 1

•••

Bank 31



- Add a column for padding:
 - 32x33 SMEM array
- Warp accesses a column:
 - 32 different banks, no bank conflicts

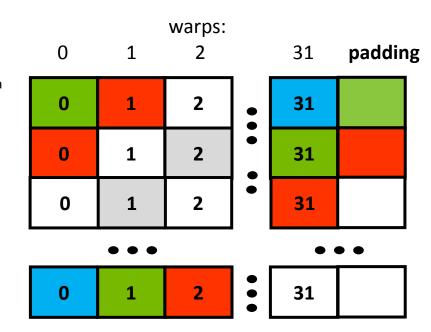
Number indentifies which warp is accessing data Color indicates in which bank data resides

Bank 0

Bank 1

•••

Bank 31



Remedy:

- Simply pad each row of SMEM array with an extra element
 - 32x33 array, as opposed to 32x32
 - Effort: 1 character, literally
- Warp access to SMEM
 - Writes still have no bank conflicts:
 - threads access successive elements
 - Reads also have no bank conflicts:
 - Stride between threads is 17 8-byte words, thus each goes to a different bank

Speedup: ~2x

- Note that the code has 2 gmem accesses and 2 smem accesses per thread
- Removing 32-way bank conflicts cut time in half: implies bank conflicts were taking as long as gmem accesses

105

Summary: Shared Memory

- Shared memory is a tremendous resource
 - Very high bandwidth (terabytes per second)
 - 20-30x lower latency than accessing GMEM
 - Data is programmer-managed, no evictions by hardware
- Performance issues to look out for:
 - Bank conflicts add latency and reduce throughput
 - Many-way bank conflicts can be very expensive
 - Replay latency adds up, can become as long as DRAM latency
 - However, few code patterns have high conflicts, padding is a very simple and effective solution
 - Use profiling tools to identify bank conflicts

Exposing sufficient parallelism

Kepler: Level of Parallelism Needed

To saturate instruction bandwidth:

- Fp32 math: ~1.7K independent instructions per SM
- Lower for other, lower-throughput instructions
- Keep in mind that Kepler SM can track up to 2048 threads

To saturate memory bandwidth:

100+ independent lines per SM

Exposing Sufficient Parallelism

What hardware ultimately needs:

- Arithmetic pipes:
 - sufficient number of independent instructions
 - accommodates multi-issue and latency hiding
- Memory system:
 - sufficient requests in flight to saturate bandwidth

Two ways to increase parallelism:

- More independent work within a thread (warp)
 - ILP for math, independent accesses for memory
- More concurrent threads (warps)

2012, NVIDIA 109

Occupancy

- Occupancy: number of concurrent threads per SM
 - Expressed as either:
 - the number of threads (or warps),
 - percentage of maximum threads
- Determined by several factors
 - (refer to Occupancy Calculator, CUDA Programming Guide for full details)
 - Registers per thread
 - SM registers are partitioned among the threads
 - Shared memory per threadblock
 - SM shared memory is partitioned among the blocks
 - Threads per threadblock
 - Threads are allocated at threadblock granularity

Kepler SM resources

- 64K 32-bit registers
- Up to 48 KB of shared memory
- Up to 2048 concurrent threads
- Up to 16 concurrent threadblocks

Occupancy and Performance

- Note that 100% occupancy isn't needed to reach maximum performace
 - Once the "needed" occupancy is reached, further increases won't improve performance
- Needed occupancy depends on the code
 - More independent work per thread -> less occupancy is needed
 - Memory-bound codes tend to need more occupancy
 - Higher latency than for arithmetic, need more work to hide it

2012, NVIDIA 111

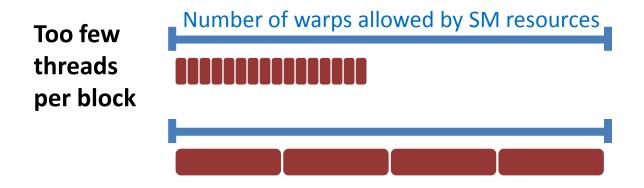
Exposing Parallelism: Grid Configuration

- Grid: arrangement of threads into threadblocks
- Two goals:
 - Expose enough parallelism to an SM
 - Balance work across the SMs
- Several things to consider when launching kernels:
 - Number of threads per threadblock
 - Number of threadblocks
 - Amount of work per threadblock

Threadblock Size and Occupancy

- Threadblock size is a multiple of warp size (32)
 - Even if you request fewer threads, HW rounds up
- Threadblocks can be too small
 - Kepler SM can run up to 16 threadblocks concurrently
 - SM may reach the block limit before reaching good occupancy
 - Example: 1-warp blocks -> 16 warps per Kepler SM (probably not enough)
- Threadblocks can be too big
 - Quantization effect:
 - Enough SM resources for more threads, not enough for another large block
 - A threadblock isn't started until resources are available for all of its threads

Threadblock Sizing



- SM resources:
 - Registers
 - Shared memory

Waves and Tails

Wave of threadblocks

- A set of threadblocks that run concurrently on GPU
- Maximum size of the wave is determined by:
 - How many threadblocks can fit on one SM
 - Number of threads per block
 - Resource consumption: registers per thread, SMEM per block
 - Number of SMs

Any grid launch will be made up of:

- Some number of full waves
- Possibly one tail: wave with fewer than possible blocks
 - Last wave by definition
 - Happens if the grid size is not divisible by wave size

Tail Effect

Tail underutilizes GPU

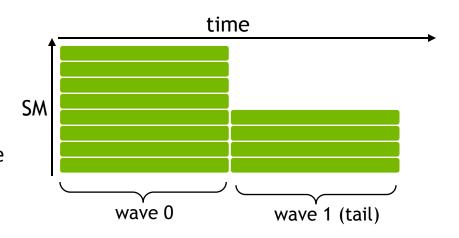
Impacts performance if tail is a significant portion of time

Example:

- GPU with 8 SMs
- Code that can run 1 threadblock per SM at a time
 - Wave size = 8 blocks
- Grid launch: 12 threadblocks

2 waves:

- 1 full
- Tail with 4 threadblocks
 - Tail utilizes 50% of GPU, compared to full-wave
 - Overall GPU utilization: 75% of possible



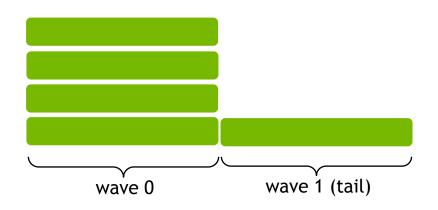
Tail Effect

A concern only when:

- Launching few threadblocks (no more than a few waves)
- Tail effect is negligible when launching 10s of waves
 - If that's your case, you can ignore the following info
- Tail effect can occur even with perfectly-sized grids
 - Threadblocks don't stay in lock-step
- To combat tail effect:
 - Spread the work of one thread among several threads
 - Increases the number of blocks -> increases the number of waves
 - Spread the threads of one block among several
 - Improves load balancing during the tail
 - Launch independent kernels into different streams
 - Hardware will execute threadblocks from different kernels to fill the GPU

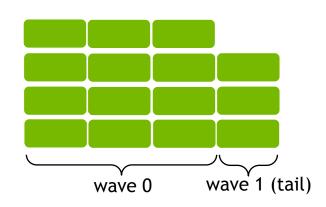
2012. NVIDIA

Tail Effect: Large vs Small Threadblocks



2 waves of threadblocks

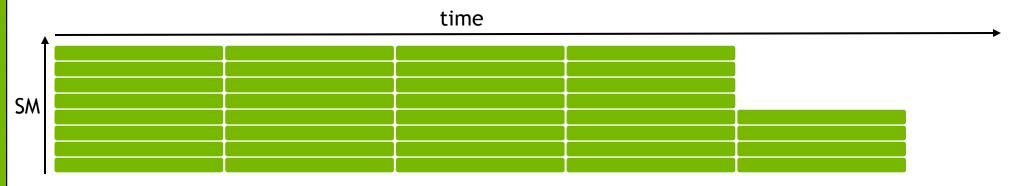
- Tail is running at 25% of possible
- Tail is 50% of time
 - Could be improved if the tail work could be better balanced across SMs



4 waves of threadblocks

- Tail is running at 75% of possible
- Tail is 25% of time
 - Tail work is spread across more threadblocks, better balanced across SMs
- Estimated speedup: 1.5x (time reduced by 33%)

Tail Effect: Few vs Many Waves of Blocks



80% of time code runs at 100% of its ability, 20% of time it runs at 50% of ability: 90% of possible

95% of time code runs at 100% of its ability, 5% of time it runs at 50% of ability: 97.5% of possible

2012, NVIDIA 119

Takeaways

Threadblock size choice:

- Start with 128-256 threads per block
 - Adjust up/down by what best matches your function
 - Example: stencil codes prefer larger blocks to minimize halos
- Multiple of warp size (32 threads)
- If occupancy is critical to performance:
 - Check that block size isn't precluding occupancy allowed by register and SMEM resources

Grid size:

- 1,000 or more threadblocks
 - 10s of waves of threadblocks: no need to think about tail effect
 - Makes your code ready for several generations of future GPUs

Summary

- What you need for good GPU performance
 - Expose sufficient parallelism to keep GPU busy
 - General recommendations:
 - 1000+ threadblocks per GPU
 - 1000+ concurrent threads per SM (32+ warps)
 - Maximize memory bandwidth utilization
 - Pay attention to warp address patterns (
 - Have sufficient independent memory accesses to saturate the bus
 - Minimize warp divergence
 - Keep in mind that instructions are issued per warp
- Use profiling tools to analyze your code

Additional Resources

Previous GTC optimization talks

- Have different tips/tricks, case studies
- GTC 2012: GPU Performance Analysis and Optimization
 - http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=gpu+performance+analysis & searchItems = & sessionTopic= & sessionEvent = & sessionFormat = & sessionFor
- GTC 2010: Analysis-Driven Optimization:
 - http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=analysis-driven&searchItems=&sessionTopic=&sessionEvent=&sessionYear=2010&sessionFormat=&submit=#98

GTC 2013 talks on performance analysis tools:

- S3011: Case Studies and Optimization Using Nsight Visual Studio Edition
- S3046: Performance Optimization Strategies for GPU-Accelerated Applications

Kepler architecture white paper:

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

Miscellaneous:

- Webinar on register spilling:
 - Slides: http://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
 - Video: http://developer.download.nvidia.com/CUDA/training/CUDA LocalMemoryOptimization.mp4
- GPU computing webinars: https://developer.nvidia.com/gpu-computing-webinars

