NAME: *

CS 255 - Computer Organization/Architecture I

Practice Questions for Midterm

Note: I do not have answers to these questions. Nor do I intend to provide answers to
them. You should work them out among yourselves. You should have learned all that is
necessary from your project assignments already but if you still have problems with these
questions, you may ask me specific questions. I will not answer questions like "how do you
do this one ?” because I want to educate students and do not want to teach students how
to prepare for tests...

Question 1.

Suppose registers r0 and r1, and memory locations 80, 81, 82 and 83 current have the
following bit pattern:

—————————— e TR S
r0 | 00000001 | 00000001 | 00000001 | 00000001 |
---------- T
—————————— e
rl [11111111 | 11111111 | 11111111 | 11111111 |
—————————— mmm e m e ——— e
Memory : |

$mmmmm e +

80 | 10101010 |

Hmmmmmmmm e +

81 | 01010101 |

Hmmmmmm e +

82 | 00000000 |

e +

83 | 11110000 |

e +

1. What is the bit pattern in register r1 after the CPU executes the instruction mov r0, r1?
2. Starting with the original values in the registers and in memory, what is the bit pattern
in register r1 after the CPU executes the instructions:

mov r0,#80
ldrsb r1, [r0]

3. Starting with the original values in the registers and in memory, what is the bit pattern
in register r1 after the CPU executes the instructions:

mov rO0,#80
ldrsh ri1, [r0]

4. Starting with the original values in the registers and in memory, what is the bit pattern
in register r1 after the CPU executes the instruction:

mov rl,#-75

5. Starting with the original values in the registers and in memory, what is the bit pattern
in the memory after the CPU executes the instructions:

mov rl,#80
str ro0, [r1]
6. Starting with the original values in the registers and in memory, what is the bit pattern
in the memory after the CPU executes the instructions:
mov rl,#80
strb r0, [r1]
7. Starting with the original values in the registers and in memory, what is the bit pattern
in the memory after the CPU executes the instructions:
mov r0,#80
str r1, [r0]
8. Starting with the original values in the registers and in memory, what is the bit pattern
in the memory after the CPU executes the instruction:

mov r0,#-2
mov rl,#80
str ro0, [r1]

Question 2.

e Give the 3 digits 10s complement representation for -95
e Give the 8 bits 2s complement representation for -95
e Give the IEEE 754 representation for -95.625

e Perform this computation in base 5: 2343 + 4244

Question 3.

An array of integer MyIntArr, an array of short MyShortArr, variables byte i, short
j, int k int IntVar, and short ShortVar are defined as following in assembler:

MyIntArr: .skip 400
MyShortArr: .skip 20

i: .skip 1
j: .skip 2 // Ignore alignment !
k: .skip 4
IntVar: .skip 4
ShortVar: .skip 2

Write the ARM assembler instructions that accomplishes the equivalent of the following
high level language statements:

1. MyIntArr(k] = 1234;

2. MyShortArr[i+j] = 1234;

3. MyIntArr[k+4] = MyIntArr([i] + MyShortArr([j] + IntVar;

4. MyShortArr[k+4] = MyIntArr[i] + MyShortArr[j] + ShortVar;

Question 4.

A class is defined as follows:

class MyObj

{
int SSN;
int Balance;
MyObj next;
}

Assumed that a linked list of MyObj objects has been previously constructed and the as-
sembler variable

head: .skip 4

refers to the first object in the list (i.e., contains the address of the first object in the list).

Write the ARM assembler instructions that accomplishes the equivalent of the following
high level language statements:

1. head.next.SSN = head.SSN;

2. head.Balance = head.next.next.Balance + 1234;

Question 5.

Translate the following program fragment into ARM assembler instructions:

int A, B, GDC;

while (A '= B)

{
if (A >B)
A=A - B;
else
B =B - A;
}
GDC = A;

Question 6.

The variables x and y are integers. Translate the following program fragment into ARM
assembler instructions:

if (x+y>=70&& x>7y)

{
X =x + 1;
}
else if (x <y ||l x+y > 50)
{
y=y -1
}

Question 7.
Write a int parseInt(String s) method to convert a base 5 number string into binary.

The digits used are 0, 1, 2, 3 and 4.

