

MOTOROLA INC., 1992

MOTOROLA
M68000 FAMILY

Programmer’s Reference Manual

(Includes CPU32 Instructions)

Introduction

1-2

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

1.1 INTEGER UNIT USER PROGRAMMING MODEL

Figure 1-1 illustrates the integer portion of the user programming model. It consists of the
following registers:

• 16 General-Purpose 32-Bit Registers (D7 – D0, A7 – A0)

• 32-Bit Program Counter (PC)

• 8-Bit Condition Code Register (CCR)

.

1.1.1 Data Registers (D7 – D0)

These registers are for bit and bit field (1 – 32 bits), byte (8 bits), word (16 bits), long-word
(32 bits), and quad-word (64 bits) operations. They also can be used as index registers.

1.1.2 Address Registers (A7 – A0)

These registers can be used as software stack pointers, index registers, or base address
registers. The base address registers can be used for word and long-word operations.
Register A7 is used as a hardware stack pointer during stacking for subroutine calls and
exception handling. In the user programming model, A7 refers to the user stack pointer
(USP).

Figure 1-1. M68000 Family User Programming Model

A0
A1
A2
A3
A4
A5
A6

A7
(USP)

PC

D0
D1
D2
D3
D4
D5
D6
D7

DATA
REGISTERS

ADDRESS
REGISTERS

USER
STACK
POINTER
PROGRAM
COUNTER

CCR
CONDITION
CODE
REGISTER

01531

01531

0715

031

01531

Introduction

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

1-3

1.1.3 Program Counter

The PC contains the address of the instruction currently executing. During instruction
execution and exception processing, the processor automatically increments the contents
or places a new value in the PC. For some addressing modes, the PC can be used as a
pointer for PC relative addressing.

1.1.4 Condition Code Register

Consisting of five bits, the CCR, the status register’s lower byte, is the only portion of the
status register (SR) available in the user mode. Many integer instructions affect the CCR,
indicating the instruction’s result. Program and system control instructions also use certain
combinations of these bits to control program and system flow. The condition codes meet
two criteria: consistency across instructions, uses, and instances and meaningful results
with no change unless it provides useful information.

Consistency across instructions means that all instructions that are special cases of more
general instructions affect the condition codes in the same way. Consistency across uses
means that conditional instructions test the condition codes similarly and provide the same
results whether a compare, test, or move instruction sets the condition codes. Consistency
across instances means that all instances of an instruction affect the condition codes in the
same way.

The first four bits represent a condition of the result generated by an operation. The fifth bit
or the extend bit (X-bit) is an operand for multiprecision computations. The carry bit (C-bit)
and the X-bit are separate in the M68000 family to simplify programming techniques that use
them (refer to Table 3-18 as an example). In the instruction set definitions, the CCR is
illustrated as follows:

X—Extend
Set to the value of the C-bit for arithmetic operations; otherwise not affected or set to a
specified result.

N—Negative
Set if the most significant bit of the result is set; otherwise clear.

Z—Zero
Set if the result equals zero; otherwise clear.

V—Overflow
Set if an arithmetic overflow occurs implying that the result cannot be represented in the
operand size; otherwise clear.

X N Z V C

Introduction

1-4

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

C—Carry
Set if a carry out of the most significant bit of the operand occurs for an addition, or if a
borrow occurs in a subtraction; otherwise clear.

1.2 FLOATING-POINT UNIT USER PROGRAMMING MODEL

The following paragraphs describe the registers for the floating- point unit user programming
model. Figure 1-2 illustrates the M68000 family user programming model’s floating-point
portion for the MC68040 and the MC68881/MC68882 floating-point coprocessors. It
contains the following registers:

• 8 Floating-Point Data Registers (FP7 – FP0)

• 16-Bit Floating-Point Control Register (FPCR)

• 32-Bit Floating-Point Status Register (FPSR)

• 32-Bit Floating-Point Instruction Address Register (FPIAR)

1.2.1 Floating-Point Data Registers (FP7 – FP0)

These floating-point data registers are analogous to the integer data registers for the
M68000 family. They always contain extended- precision numbers. All external operands,
despite the data format, are converted to extended-precision values before being used in
any calculation or being stored in a floating-point data register. A reset or a null-restore
operation sets FP7 – FP0 positive, nonsignaling not-a-numbers (NANs).

Figure 1-2. M68000 Family Floating-Point Unit User Programming Model

79 63 0

FP0

FP1

FP3

FP4

FP5

FP6

FP7

FP2

FLOATING-POINT
DATA REGISTERS

FPCR
FLOATING-POINT
CONTROL
REGISTER

FPSR
FLOATING-POINT
STATUS
REGISTER

FPIAR

FLOATING-POINT
INSTRUCTION
ADDRESS
REGISTER

071531
MODE

CONTROL
EXCEPTION

ENABLE0

EXCEPTION
STATUS

CONDITION
CODE

QUOTIENT ACCRUED
EXCEPTION

071531 23

Introduction

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 1-25

1.7 ORGANIZATION OF DATA IN REGISTERS

The following paragraphs describe data organization within the data, address, and control
registers.

1.7.1 Organization of Integer Data Formats in Registers

Each integer data register is 32 bits wide. Byte and word operands occupy the lower 8- and
16-bit portions of integer data registers, respectively. Long- word operands occupy the entire
32 bits of integer data registers. A data register that is either a source or destination operand
only uses or changes the appropriate lower 8 or 16 bits (in byte or word operations,
respectively). The remaining high-order portion does not change and goes unused. The
address of the least significant bit (LSB) of a long-word integer is zero, and the MSB is 31.
For bit fields, the address of the MSB is zero, and the LSB is the width of the register minus
one (the offset). If the width of the register plus the offset is greater than 32, the bit field
wraps around within the register. Figure 1-18 illustrates the organization of various data
formats in the data registers.

An example of a quad word is the product of a 32-bit multiply or the quotient of a 32-bit divide
operation (signed and unsigned). Quad words may be organized in any two integer data
registers without restrictions on order or pairing. There are no explicit instructions for the
management of this data format, although the MOVEM instruction can be used to move a
quad word into or out of registers.

Binary-coded decimal (BCD) data represents decimal numbers in binary form. Although
there are many BCD codes, the BCD instructions of the M68000 family support two formats,
packed and unpacked. In these formats, the LSBs consist of a binary number having the
numeric value of the corresponding decimal number. In the unpacked BCD format, a byte
defines one decimal number that has four LSBs containing the binary value and four
undefined MSBs. Each byte of the packed BCD format contains two decimal numbers; the
least significant four bits contain the least significant decimal number and the most
significant four bits contain the most significant decimal number.

Introduction

1-26 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

.

Because address registers and stack pointers are 32 bits wide, address registers cannot be
used for byte-size operands. When an address register is a source operand, either the low-
order word or the entire long-word operand is used, depending upon the operation size.
When an address register is the destination operand, the entire register becomes affected,
despite the operation size. If the source operand is a word size, it is sign-extended to 32 bits
and then used in the operation to an address register destination. Address registers are
primarily for addresses and address computation support. The instruction set includes
instructions that add to, compare, and move the contents of address registers. Figure 1-19
illustrates the organization of addresses in address registers.

Figure 1-19. Organization of Integer Data Formats in Address Registers

Figure 1-18. Organization of Integer Data Formats in Data Registers

31 16 15 0

SIGN-EXTENDED 16-BIT ADDRESS OPERAND

31 0

FULL 32-BIT ADDRESS OPERAND

LSBMSB

1 031 30
BIT (0 MODULO (OFFSET)
< 31,OFFSET OF 0 = MSB)

<_

0731

BYTE

031

16-BIT WORD

031

LONG WORD

MSB

3263

QUAD WORD031

OFFSET

031
BIT FIELD (0 < OFFSET < 32,
0 < WIDTH 32)

7 0331

031 7

15

LOW-ORDER WORD

LONG WORD

ANY DX

LSBANY DY

WIDTH* <_

UNPACKED BCD

PACKED BCD

UNDEFINED LEAST SIGNIFICANT DIGIT

4

34

LEAST SIGNIFICANT DIGITMOST SIGNIFICANT DIGIT

* IF WIDTH + OFFSET > 32, BIT FIELD WRAPS AROUND WITHIN THE REGISTER.

8

8

LSB

LSB

MSB

MSB

LSBMSBNOT USED

NOT USED

Introduction

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 1-27

Control registers vary in size according to function. Some control registers have undefined
bits reserved for future definition by Motorola. Those particular bits read as zeros and must
be written as zeros for future compatibility.

All operations to the SR and CCR are word-size operations. For all CCR operations, the
upper byte is read as all zeros and is ignored when written, despite privilege mode. The
alternate function code registers, supervisor function code (SFC) and data function code
(DFC), are 32-bit registers with only bits 0P2 implemented. These bits contain the address
space values for the read or write operands of MOVES, PFLUSH, and PTEST instructions.
Values transfer to and from the SFC and DFC by using the MOVEC instruction. These are
long-word transfers; the upper 29 bits are read as zeros and are ignored when written.

1.7.2 Organization of Integer Data Formats in Memory

The byte-addressable organization of memory allows lower addresses to correspond to
higher order bytes. The address N of a long-word data item corresponds to the address of
the highest order wordUs MSB. The lower order word is located at address N + 2, leaving
the LSB at address N + 3 (see Figure 1-20). Organization of data formats in memory is
consistent with the M68000 family data organization. The lowest address (nearest
$00000000) is the location of the MSB, with each successive LSB located at the next
address (N + 1, N + 2, etc.). The highest address (nearest $FFFFFFFF) is the location of the
LSB.

.

Figure 1-20. Memory Operand Addressing

31 23 15 7 0

BYTE $00000000

WORD $00000000

LONG WORD $00000000

BYTE $00000001 BYTE $00000002 BYTE $00000003

WORD $00000002

BYTE $00000004

WORD $00000004

LONG WORD $00000004

BYTE $00000005 BYTE $00000006 BYTE $00000007

WORD $00000006

BYTE $FFFFFFFC

WORD $FFFFFFFC

LONG WORD $FFFFFFFC

BYTE $FFFFFFFD BYTE $FFFFFFFE BYTE $FFFFFFFF

WORD $FFFFFFFE

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

2-1

SECTION 2
ADDRESSING CAPABILITIES

Most operations take asource operand and destination operand, compute them, and store
the result in the destination location. Single-operand operations take a destination operand,
compute it, and store the result in the destination location. External microprocessor
references to memory are either program references that refer to program space or data
references that refer to data space. They access either instruction words or operands (data
items) for an instruction. Program space is the section of memory that contains the program
instructions and any immediate data operands residing in the instruction stream. Data space
is the section of memory that contains the program data. Data items in the instruction stream
can be accessed with the program counter relative addressing modes; these accesses
classify as program references.

2.1 INSTRUCTION FORMAT

M68000 family instructions consist of at least one word; some have as many as 11 words.
Figure 2-1 illustrates the general composition of an instruction. The first word of the
instruction, called the simple effective address operation word, specifies the length of the
instruction, the effective addressing mode, and the operation to be performed. The
remaining words, called brief and full extension words, further specify the instruction and
operands. These words can be floating-point command words, conditional predicates,
immediate operands, extensions to the effective addressing mode specified in the simple
effective address operation word, branch displacements, bit number or bit field
specifications, special register specifications, trap operands, pack/unpack constants, or
argument counts.

Figure 2-1. Instruction Word General Format

SINGLE EFFECTIVE ADDRESS OPERATION WORD
(ONE WORD, SPECIFIES OPERATION AND MODES)

SPECIAL OPERAND SPECIFIERS
(IF ANY, ONE OR TWO WORDS)

IMMEDIATE OPERAND OR SOURCE EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO SIX WORDS)

DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO SIX WORDS)

15 0

Addressing Capabilities

2-2

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

An instruction specifies the function to be performed with an operation code and defines the
location of every operand. Instructions specify an operand location by register specification,
the instruction’s register field holds the register’s number; by effective address, the
instruction’s effective address field contains addressing mode information; or by implicit
reference, the definition of the instruction implies the use of specific registers.

The single effective address operation word format is the basic instruction word (see Figure
2-2). The encoding of the mode field selects the addressing mode. The register field
contains the general register number or a value that selects the addressing mode when the
mode field contains opcode 111. Some indexed or indirect addressing modes use a
combination of the simple effective address operation word followed by a brief extension
word. Other indexed or indirect addressing modes consist of the simple effective address
operation word and a full extension word. The longest instruction is a MOVE instruction with
a full extension word for both the source and destination effective addresses and eight other
extension words. It also contains 32-bit base displacements and 32-bit outer displacements
for both source and destination addresses. Figure 2-2 illustrates the three formats used in
an instruction word; Table 2-1 lists the field definitions for these three formats.

SINGLE EFFECTIVE ADDRESS OPERATION WORD FORMAT

BRIEF EXTENSION WORD FORMAT

FULL EXTENSION WORD FORMAT

Figure 2-2. Instruction Word Specification Formats

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X
EFFECTIVE ADDRESS

MODE REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D/A REGISTER W/L SCALE 0 DISPLACEMENT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D/A REGISTER W/L SCALE 1 BS IS BD SIZE 0 I/IS

BASE DISPLACEMENT (0, 1, OR 2 WORDS)

OUTER DISPLACEMENT (0, 1, OR 2 WORDS)

Addressing Capabilities

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

2-3

For effective addresses that use a full extension word format, the index suppress (IS) bit and
the index/indirect selection (I/IS) field determine the type of indexing and indirect action.
Table 2-2 lists the index and indirect operations corresponding to all combinations of IS and
I/IS values.

Table 2-1. Instruction Word Format Field Definitions

Field Definition

Instruction

Mode Addressing Mode

Register General Register Number

Extensions

D/A Index Register Type
0 = Dn
1 = An

W/L Word/Long-Word Index Size
0 = Sign-Extended Word
1 = Long Word

Scale Scale Factor
00 = 1
01 = 2
10 = 4
11 = 8

BS Base Register Suppress
0 = Base Register Added
1 = Base Register Suppressed

IS Index Suppress
0 = Evaluate and Add Index Operand
1 = Suppress Index Operand

BD SIZE Base Displacement Size
00 = Reserved
01 = Null Displacement
10 = Word Displacement
11 = Long Displacement

I/IS Index/Indirect Selection
Indirect and Indexing Operand Determined in Conjunc-
tion with Bit 6, Index Suppress

Addressing Capabilities

2-4

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

2.2 EFFECTIVE ADDRESSING MODES

Besides the operation code, which specifies the function to be performed, an instruction
defines the location of every operand for the function. Instructions specify an operand
location in one of three ways. A register field within an instruction can specify the register to
be used; an instruction’s effective address field can contain addressing mode information;
or the instruction’s definition can imply the use of a specific register. Other fields within the
instruction specify whether the register selected is an address or data register and how the
register is to be used.

Section 1 Introduction

 contains detailed register descriptions.

An instruction’s addressing mode specifies the value of an operand, a register that contains
the operand, or how to derive the effective address of an operand in memory. Each
addressing mode has an assembler syntax. Some instructions imply the addressing mode
for an operand. These instructions include the appropriate fields for operands that use only
one addressing mode.

Table 2-2. IS-I/IS Memory Indirect Action Encodings

IS Index/Indirect

Operation

0 000 No Memory Indirect Action

0 001 Indirect Preindexed with Null Outer Displacement

0 010 Indirect Preindexed with Word Outer Displacement

0 011 Indirect Preindexed with Long Outer Displacement

0 100 Reserved

0 101 Indirect Postindexed with Null Outer Displacement

0 110 Indirect Postindexed with Word Outer Displacement

0 111 Indirect Postindexed with Long Outer Displacement

1 000 No Memory Indirect Action

1 001 Memory Indirect with Null Outer Displacement

1 010 Memory Indirect with Word Outer Displacement

1 011 Memory Indirect with Long Outer Displacement

1 100–111 Reserved

Addressing Capabilities

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

2-5

2.2.1 Data Register Direct Mode

In the data register direct mode, the effective address field specifies the data register
containing the operand.

.

2.2.2 Address Register Direct Mode

In the address register direct mode, the effective address field specifies the address register
containing the operand.

.

2.2.3 Address Register Indirect Mode

In the address register indirect mode, the operand is in memory. The effective address field
specifies the address register containing the address of the operand in memory.

.

EA = Dn
Dn
000
REG. NO.
0

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

DATA REGISTER OPERAND

OPERAND

EA = An
An
001
REG. NO.
0

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

ADDRESS REGISTER

MEMORY

EA = (An)
(An)
010
REG. NO.
0

OPERAND

OPERAND POINTER

031

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

ADDRESS REGISTER

POINTS TO

Addressing Capabilities

2-6

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

2.2.4 Address Register Indirect with Postincrement Mode

In the address register indirect with postincrement mode, the operand is in memory. The
effective address field specifies the address register containing the address of the operand
in memory. After the operand address is used, it is incremented by one, two, or four
depending on the size of the operand: byte, word, or long word, respectively. Coprocessors
may support incrementing for any operand size, up to 255 bytes. If the address register is
the stack pointer and the operand size is byte, the address is incremented by two to keep
the stack pointer aligned to a word boundary.

.

EA = (An) + SIZE
(An) +
011
REG. NO.
0

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

ADDRESS REGISTER CONTENTS

031

CONTENTS

031

OPERAND POINTER

OPERAND LENGTH (1, 2, OR 4) SIZE

MEMORY OPERAND

POINTS TO

+

Addressing Capabilities

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

2-7

2.2.5 Address Register Indirect with Predecrement Mode

In the address register indirect with predecrement mode, the operand is in memory. The
effective address field specifies the address register containing the address of the operand
in memory. Before the operand address is used, it is decremented by one, two, or four
depending on the operand size: byte, word, or long word, respectively. Coprocessors may
support decrementing for any operand size up to 255 bytes. If the address register is the
stack pointer and the operand size is byte, the address is decremented by two to keep the
stack pointer aligned to a word boundary.

.

CONTENTS

031

CONTENTS

031

EA = (An)–SIZE
– (An)
100
REG. NO.
0

OPERAND POINTER

OPERAND LENGTH (1, 2, OR 4)

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

ADDRESS REGISTER

SIZE

MEMORY OPERAND

POINTS TO

Addressing Capabilities

2-8

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

2.2.6 Address Register Indirect with Displacement Mode

In the address register indirect with displacement mode, the operand is in memory. The sum
of the address in the address register, which the effective address specifies, plus the sign-
extended 16-bit displacement integer in the extension word is the operand’s address in
memory. Displacements are always sign-extended to 32 bits prior to being used in effective
address calculations.

.

+DISPLACEMENT

OPERAND POINTER

EA = (An) + d
(d An)
101
REG. NO.
1

CONTENTS

CONTENTS

0

0

31

31

SIGN EXTENDED

31 0

INTEGER

16
16,

15

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

ADDRESS REGISTER

MEMORY OPERAND

POINTS TO

Addressing Capabilities

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

2-9

2.2.7 Address Register Indirect with Index (8-Bit Displacement) Mode

This addressing mode requires one extension word that contains an index register indicator
and an 8-bit displacement. The index register indicator includes size and scale information.
In this mode, the operand is in memory. The operand’s address is the sum of the address
register’s contents; the sign-extended displacement value in the extension word’s low-order
eight bits; and the index register’s sign-extended contents (possibly scaled). The user must
specify the address register, the displacement, and the index register in this mode.

.

+

+X

INTEGERSIGN EXTENDED

SIGN-EXTENDED VALUE

SCALE VALUE

CONTENTS

0

7 031

31 0

31 0

DISPLACEMENT

INDEX REGISTER

SCALE

OPERAND POINTER

31

EA = (An) + (Xn) + d
(d ,An, Xn.SIZE*SCALE)8

8

110
REG. NO.
1

CONTENTS

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

ADDRESS REGISTER

MEMORY OPERAND

POINTS TO

Addressing Capabilities

2-10

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

2.2.8 Address Register Indirect with Index (Base Displacement) Mode

This addressing mode requires an index register indicator and an optional 16- or 32-bit sign-
extended base displacement. The index register indicator includes size and scaling
information. The operand is in memory. The operand’s address is the sum of the contents of
the address register, the base displacement, and the scaled contents of the sign-extended
index register.

In this mode, the address register, the index register, and the displacement are all optional.
The effective address is zero if there is no specification. This mode provides a data register
indirect address when there is no specific address register and the index register is a data
register.

.

+

+X

CONTENTS

SIGN-EXTENDED VALUE

SCALE VALUE

CONTENTS

31 0

31 0

31 0

031

SIGN-EXTENDED VALUEBASE DISPLACEMENT

INDEX REGISTER

 SCALE

OPERAND POINTER

EA = (An) + (Xn) + bd
(bd,An,Xn.SIZE*SCALE)
110
REG. NO.
1,2, OR 3

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

ADDRESS REGISTER

MEMORY OPERAND

POINTS TO

Addressing Capabilities

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

2-11

2.2.9 Memory Indirect Postindexed Mode

In this mode, both the operand and its address are in memory. The processor calculates an
intermediate indirect memory address using a base address register and base
displacement. The processor accesses a long word at this address and adds the index
operand (Xn.SIZE*SCALE) and the outer displacement to yield the effective address. Both
displacements and the index register contents are sign-extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. Both the base and outer
displacements may be null, word, or long word. When omitting a displacement or
suppressing an element, its value is zero in the effective address calculation.

.

EA = (An + bd) + Xn.SIZE*SCALE + od
([bd,An],Xn.SIZE*SCALE,od)
110
REG. NO.
1,2,3,4, OR 5

+

+X

CONTENTS

SIGN-EXTENDED VALUE

CONTENTS

31 0

31 0

31 0

031

SIGN-EXTENDED VALUE

SCALE VALUE

BASE DISPLACEMENT

INDEX REGISTER

 SCALE

OPERAND POINTER

CONTENTS

VALUE AT INDIRECT MEMORY ADDRESS

31 0

31 0

SIGN-EXTENDED VALUE

31 0

+OUTER DISPLACEMENT

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

ADDRESS REGISTER

INTERMEDIATE
ADDRESS

MEMORY OPERAND

POINTS TO

MEMORY

POINTS TO

Addressing Capabilities

2-12

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

2.2.10 Memory Indirect Preindexed Mode

In this mode, both the operand and its address are in memory. The processor calculates an
intermediate indirect memory address using a base address register, a base displacement,
and the index operand (Xn.SIZE*SCALE). The processor accesses a long word at this
address and adds the outer displacement to yield the effective address. Both displacements
and the index register contents are sign-extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. Both the base and outer
displacements may be null, word, or long word. When omitting a displacement or
suppressing an element, its value is zero in the effective address calculation.

.

EA = (bd + An) + Xn.SIZE*SCALE + od
([bd, An, Xn.SIZE*SCALE], od)
110
REG. NO.
1,2,3,4, OR 5

+

+X

CONTENTS

SIGN-EXTENDED VALUE

SCALE VALUE

CONTENTS

31 0

31 0

31 0

031

SIGN-EXTENDED VALUE

SCALE VALUE

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

ADDRESS REGISTER

BASE DISPLACEMENT

INDEX REGISTER

 SCALE

OPERAND POINTER

CONTENTS

VALUE AT INDIRECT MEMORY ADDRESS

31 0

31 0

SIGN-EXTENDED VALUE
31 0

+OUTER DISPLACEMENT

 INTERMEDIATE ADDRESS

MEMORY OPERAND

POINTS TO

POINTS TO

MEMORY

Addressing Capabilities

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

2-13

2.2.11 Program Counter Indirect with Displacement Mode

In this mode, the operand is in memory. The address of the operand is the sum of the
address in the program counter (PC) and the sign-extended 16-bit displacement integer in
the extension word. The value in the PC is the address of the extension word. This is a
program reference allowed only for reads.

.

+DISPLACEMENT

OPERAND POINTER

CONTENTS

CONTENTS

0

0

31

31

SIGN EXTENDED

31 0

INTEGER

15

EA = (PC) + d
(d ,PC)
111
010
1

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

PROGRAM COUNTER

16
16

MEMORY OPERAND

POINTS TO

Addressing Capabilities

2-14

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

2.2.12 Program Counter Indirect with Index (8-Bit Displacement) Mode

This mode is similar to the mode described in

2.2.7 Address Register Indirect with Index
(8-Bit Displacement) Mode

, except the PC is the base register. The operand is in memory.
The operand’s address is the sum of the address in the PC, the sign-extended displacement
integer in the extension word’s lower eight bits, and the sized, scaled, and sign-extended
index operand. The value in the PC is the address of the extension word. This is a program
reference allowed only for reads. The user must include the displacement, the PC, and the
index register when specifying this addressing mode.

.

+

+X

SIGN-EXTENDED VALUE

SCALE VALUE

CONTENTS

31 0

31 0

31 0

EA = (PC) + (Xn) + d
(d ,PC,Xn.SIZE*SCALE)
111
011
1

DISPLACEMENT

SCALE

OPERAND POINTER

INDEX REGISTER

INTEGERSIGN EXTENDED

031 7

8
8

 CONTENTS

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

PROGRAM COUNTER

MEMORY OPERAND

POINTS TO

Addressing Capabilities

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

2-15

2.2.13 Program Counter Indirect with Index (Base Displacement) Mode

This mode is similar to the mode described in

2.2.8 Address Register Indirect with Index
(Base Displacement) Mode

, except the PC is the base register. It requires an index register
indicator and an optional 16- or 32-bit sign-extended base displacement. The operand is in
memory. The operand’s address is the sum of the contents of the PC, the base
displacement, and the scaled contents of the sign-extended index register. The value of the
PC is the address of the first extension word. This is a program reference allowed only for
reads.

In this mode, the PC, the displacement, and the index register are optional. The user must
supply the assembler notation ZPC (a zero value PC) to show that the PC is not used. This
allows the user to access the program space without using the PC in calculating the effective
address. The user can access the program space with a data register indirect access by
placing ZPC in the instruction and specifying a data register as the index register.

.

+

+X

CONTENTS

SIGN-EXTENDED VALUE

SCALE VALUE

CONTENTS

31 0

31 0

31 0

EA = (PC) + (Xn) + bd
(bd, PC, Xn. SIZE*SCALE)
111
011
1,2, OR 3

031

SIGN-EXTENDED VALUEDISPLACEMENT

SCALE

OPERAND POINTER

INDEX REGISTER

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

PROGRAM COUNTER

MEMORY OPERAND

POINTS TO

Addressing Capabilities

2-16

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

2.2.14 Program Counter Memory Indirect Postindexed Mode

This mode is similar to the mode described in

2.2.9 Memory Indirect Postindexed Mode

,
but the PC is the base register. Both the operand and operand address are in memory. The
processor calculates an intermediate indirect memory address by adding a base
displacement to the PC contents. The processor accesses a long word at that address and
adds the scaled contents of the index register and the optional outer displacement to yield
the effective address. The value of the PC used in the calculation is the address of the first
extension word. This is a program reference allowed only for reads.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. The user must supply the
assembler notation ZPC (a zero value PC) to show the PC is not used. This allows the user
to access the program space without using the PC in calculating the effective address. Both
the base and outer displacements may be null, word, or long word. When omitting a
displacement or suppressing an element, its value is zero in the effective address
calculation.

EA = (bd + PC) + Xn.SIZE*SCALE + od
([bd,PC],Xn.SIZE*SCALE,od)
111
011
1,2,3,4, or 5

+

+X

SIGN-EXTENDED VALUE

SCALE VALUE

CONTENTS

31 0

31 0

031

SIGN-EXTENDED VALUE

CONTENTS

VALUE AT INDIRECT MEM. ADDRESS IN PROG. SPACE

31 0

31 0

SIGN-EXTENDED VALUE

31 0

+

BASE DISPLACEMENT

INDEX REGISTER

 SCALE

OPERAND POINTER

OUTER DISPLACEMENT

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

PROGRAM COUNTER

INTERMEDIATE
ADDRESS

CONTENTS

31 0

MEMORY OPERAND

POINTS TO

POINTS TO

MEMORY

Addressing Capabilities

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

2-17

2.2.15 Program Counter Memory Indirect Preindexed Mode

This mode is similar to the mode described in

2.2.10 Memory Indirect Preindexed Mode

,
but the PC is the base register. Both the operand and operand address are in memory. The
processor calculates an intermediate indirect memory address by adding the PC contents,
a base displacement, and the scaled contents of an index register. The processor accesses
a long word at immediate indirect memory address and adds the optional outer
displacement to yield the effective address. The value of the PC is the address of the first
extension word. This is a program reference allowed only for reads.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. The user must supply the
assembler notation ZPC showing that the PC is not used. This allows the user to access the
program space without using the PC in calculating the effective address. Both the base and
outer displacements may be null, word, or long word. When omitting a displacement or
suppressing an element, its value is zero in the effective address calculation.

.

+

+X

SIGN-EXTENDED VALUE

SCALE VALUE

31 0

31 0

031

SIGN-EXTENDED VALUE

INDIRECT MEMORY ADDRESS

VALUE AT INDIRECT MEM. ADDRESS IN PROG. SPACE

31 0

31 0

SIGN-EXTENDED VALUE

31 0
+

BASE DISPLACEMENT

INDEX REGISTER

 SCALE

OPERAND POINTER

OUTER DISPLACEMENT

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

PROGRAM COUNTER

INTERMEDIATE
ADDRESS

EA = (bd + PC) + Xn.SIZE*SCALE + od
([bd,PC,Xn.SIZE*SCALE],od)
111
011
1,2,3,4, or 5

CONTENTS

CONTENTS

31 0

MEMORY OPERAND

POINTS TO

POINTS TO

MEMORY

Addressing Capabilities

2-18

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

2.2.16 Absolute Short Addressing Mode

In this addressing mode, the operand is in memory, and the address of the operand is in the
extension word. The 16-bit address is sign-extended to 32 bits before it is used. .

2.2.17 Absolute Long Addressing Mode

In this addressing mode, the operand is in memory, and the operand’s address occupies the
two extension words following the instruction word in memory. The first extension word
contains the high-order part of the address; the second contains the low-order part of the
address. .

31

31 15 0

0

EA GIVEN
(xxx).W
111
000
1

CONTENTS

SIGN-EXTENDED EXTENSION VALUE

OPERAND POINTER

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

EXTENSION WORD

MEMORY OPERAND

POINTS TO

15 0

15 0

SECOND EXTENSION WORD

ADDRESS HIGH

ADDRESS LOW

EA GIVEN
(xxx).L
111
001
2

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

FIRST EXTENSION WORD

0

CONTENTSOPERAND POINTER

MEMORY OPERAND

POINTS TO

31

Addressing Capabilities

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

2-19

2.2.18 Immediate Data

In this addressing mode, the operand is in one or two extension words. Table 2-3 lists the
location of the operand within the instruction word format. The immediate data format is as
follows:

.

2.3 EFFECTIVE ADDRESSING MODE SUMMARY

Effective addressing modes are grouped according to the use of the mode. Data addressing
modes refer to data operands. Memory addressing modes refer to memory operands.
Alterable addressing modes refer to alterable (writable) operands. Control addressing
modes refer to memory operands without an associated size.

These categories sometimes combine to form new categories that are more restrictive. Two
combined classifications are alterable memory (addressing modes that are both alterable
and memory addresses) and data alterable (addressing modes that are both alterable and
data). Table 2-4 lists a summary of effective addressing modes and their categories.

Table 2-3. Immediate Operand Location

Operation Length Location

Byte Low-order byte of the extension word.

Word The entire extension word.

Long Word
High-order word of the operand is in the first extension word; the low-order
word is in the second extension word.

Single-Precision In two extension words.

Double-Precision In four extension words.

Extended-Precision In six extension words.

Packed-Decimal Real In six extension words.

OPERAND GIVEN
#<xxx>
111
100
1,2,4, OR 6, EXCEPT FOR PACKED DECIMAL REAL OPERANDS

GENERATION:
ASSEMBLER SYNTAX:
EA MODE FIELD:
EA REGISTER FIELD:
NUMBER OF EXTENSION WORDS:

Addressing Capabilities

2-20

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Table 2-4. Effective Addressing Modes and Categories

Addressing Modes Syntax
Mode
Field

Reg.
Field Data Memory Control Alterable

Register Direct
Data
Address

Dn
An

000
001

reg. no.
reg. no.

X
—

—
—

—
—

X
X

Register Indirect
Address
Address with Postincrement
Address with Predecrement
Address with Displacement

(An)
(An)+
–(An)

(d

16

,An)

010
011
100
101

reg. no.
reg. no.
reg. no.
reg. no.

X
X
X
X

X
X
X
X

X
—
—
X

X
X
X
X

Address Register Indirect with Index
8-Bit Displacement
Base Displacement

(d

8

,An,Xn)
(bd,An,Xn)

110
110

reg. no.
reg. no.

X
X

X
X

X
X

X
X

Memory Indirect
Postindexed
Preindexed

([bd,An],Xn,od)
([bd,An,Xn],od)

110
110

reg. no.
reg. no.

X
X

X
X

X
X

X
X

Program Counter Indirect
with Displacement (d

16

,PC) 111 010 X X X —

Program Counter Indirect with Index
8-Bit Displacement
Base Displacement

(d

8

,PC,Xn)
(bd,PC,Xn)

111
111

011
011

X
X

X
X

X
X

—
—

Program Counter Memory Indirect
Postindexed
Preindexed

([bd,PC],Xn,od)
([bd,PC,Xn],od)

111
111

011
011

X
X

X
X

X
X

X
X

Absolute Data Addressing
Short
Long

(xxx).W
(xxx).L

111
111

000
000

X
X

X
X

X
X

—
—

Immediate #<xxx> 111 100 X X — —

Addressing Capabilities

2-28 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

2.6 OTHER DATA STRUCTURES

Stacks and queues are common data structures. The M68000 family implements a system
stack and instructions that support user stacks and queues.

2.6.1 System Stack

Address register seven (A7) is the system stack pointer. Either the user stack pointer (USP),
the interrupt stack pointer (ISP), or the master stack pointer (MSP) is active at any one time.
Refer to Section 1 Introduction for details on these stack pointers. To keep data on the
system stack aligned for maximum efficiency, the active stack pointer is automatically
decremented or incremented by two for all byte-size operands moved to or from the stack.
In long-word-organized memory, aligning the stack pointer on a long-word address
significantly increases the efficiency of stacking exception frames, subroutine calls and
returns, and other stacking operations.

The user can implement stacks with the address register indirect with postincrement and
predecrement addressing modes. With an address register the user can implement a stack
that fills either from high memory to low memory or from low memory to high memory.
Important consideration are:

• Use the predecrement mode to decrement the register before using its contents as the
pointer to the stack.

• Use the postincrement mode to increment the register after using its contents as the
pointer to the stack.

• Maintain the stack pointer correctly when byte, word, and long-word items mix in these
stacks.

To implement stack growth from high memory to low memory, use -(An) to push data on the
stack and (An) + to pull data from the stack. For this type of stack, after either a push or a
pull operation, the address register points to the top item on the stack.

.

BOTTOM OF STACK

LOW MEMORY
(FREE)

TOP OF STACK

HIGH MEMORY

An

Addressing Capabilities

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 2-29

To implement stack growth from low memory to high memory, use (An) + to push data on
the stack and -(An) to pull data from the stack. After either a push or pull operation, the
address register points to the next available space on the stack. .

2.6.2 Queues

The user can implement queues, groups of information waiting to be processed, with the
address register indirect with postincrement or predecrement addressing modes. Using a
pair of address registers, the user implements a queue that fills either from high memory to
low memory or from low memory to high memory. Two registers are used because the
queues get pushed from one end and pulled from the other. One address register contains
the put pointer; the other register the get pointer. To implement growth of the queue from low
memory to high memory, use the put address register to put data into the queue and the get
address register to get data from the queue.

After a put operation, the put address register points to the next available space in the
queue; the unchanged get address register points to the next item to be removed from the
queue. After a get operation, the get address register points to the next item to be removed
from the queue; the unchanged put address register points to the next available space in the
queue. .

To implement the queue as a circular buffer, the relevant address register should be checked
and adjusted. If necessary, do this before performing the put or get operation. Subtracting
the buffer length (in bytes) from the register adjusts the address register. To implement
growth of the queue from high memory to low memory, use the put address register indirect
to put data into the queue and get address register indirect to get data from the queue.

BOTTOM OF STACK
LOW MEMORY

TOP OF STACK
(FREE)

HIGH MEMORY

An

GET (Am) +

PUT (An) +
HIGH MEMORY

LOW MEMORY

(FREE)

LAST GET (FREE)
NEXT GET

LAST PUT

Addressing Capabilities

2-30 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

After a put operation, the put address register points to the last item placed in the queue; the
unchanged get address register points to the last item removed from the queue. After a get
operation, the get address register points to the last item placed in the queue.

.

To implement the queue as a circular buffer, the get or put operation should be performed
first. Then the relevant address register should be checked and adjusted, if necessary.
Adding the buffer length (in bytes) to the address register contents adjusts the address
register.

GET – (Am)

PUT – (An)

HIGH MEMORY

LOW MEMORY

LAST PUT
(FREE)

NEXT GET
LAST GET (FREE)

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

3-1

SECTION 3
INSTRUCTION SET SUMMARY

This section briefly describes the M68000 family instruction set, using Motorola,s assembly
language syntax and notation. It includes instruction set details such as notation and format,
selected instruction examples, and an integer condition code discussion. The section
concludes with a discussion of floating-point details such as computational accuracy,
conditional test definitions, an explanation of the operation table, and a discussion of not-a-
numbers (NANs) and postprocessing.

3.1 INSTRUCTION SUMMARY

Instructions form a set of tools that perform the following types of operations:

The following paragraphs describe in detail the instruction for each type of operation. Table
3-1 lists the notations used throughout this manual. In the operand syntax statements of the
instruction definitions, the operand on the right is the destination operand.

Data Movement Program Control

Integer Arithmetic System Control

Logical Operations Cache Maintenance

Shift and Rotate Operations Multiprocessor Communications

Bit Manipulation Memory Management

Bit Field Manipulation Floating-Point Arithmetic

Binary-Coded Decimal Arithmetic

Instruction Set Summary

3-2

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Table 3-1. Notational Conventions

Single- And Double Operand Operations

+ Arithmetic addition or postincrement indicator.

– Arithmetic subtraction or predecrement indicator.

×

Arithmetic multiplication.

÷

Arithmetic division or conjunction symbol.

~ Invert; operand is logically complemented.

Λ

Logical AND

V

Logical OR

⊕

Logical exclusive OR

→

Source operand is moved to destination operand.

←→

Two operands are exchanged.

<op> Any double-operand operation.

<operand>tested Operand is compared to zero and the condition codes are set appropriately.

sign-extended All bits of the upper portion are made equal to the high-order bit of the lower portion.

Other Operations

TRAP Equivalent to Format

÷

Offset Word

→

 (SSP); SSP – 2

→

 SSP; PC

→

 (SSP); SSP – 4

→

 SSP; SR

→

 (SSP); SSP – 2

→

 SSP; (Vector)

→

 PC

STOP Enter the stopped state, waiting for interrupts.

<operand>

10

The operand is BCD; operations are performed in decimal.

If <condition>
then <operations>
else <operations>

Test the condition. If true, the operations after “then”are performed. If the condition is false and the
optional “else”clause is present, the operations after “else”are performed. If the condition is false
and else is omitted, the instruction performs no operation. Refer to the Bcc instruction description
as an example.

Register Specifications

An Any Address Register n (example: A3 is address register 3)

Ax, Ay Source and destination address registers, respectively.

Dc Data register D7–D0, used during compare.

Dh, Dl Data register’s high- or low-order 32 bits of product.

Dn Any Data Register n (example: D5 is data register 5)

Dr, Dq Data register’s remainder or quotient of divide.

Du Data register D7–D0, used during update.

Dx, Dy Source and destination data registers, respectively.

MRn Any Memory Register n.

Rn Any Address or Data Register

Rx, Ry Any source and destination registers, respectively.

Xn Index Register

Instruction Set Summary

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

3-3

Table 3-1. Notational Conventions (Continued)

Data Format And Type

+ inf Positive Infinity

<fmt> Operand Data Format: Byte (B), Word (W), Long (L), Single (S), Double (D), Extended (X), or
Packed (P).

B, W, L Specifies a signed integer data type (twos complement) of byte, word, or long word.

D Double-precision real data format (64 bits).

k A twos complement signed integer (–64 to +17) specifying a number’s format to be stored in the
packed decimal format.

P Packed BCD real data format (96 bits, 12 bytes).

S Single-precision real data format (32 bits).

X Extended-precision real data format (96 bits, 16 bits unused).

– inf Negative Infinity

Subfields and Qualifiers

#<xxx> or #<data> Immediate data following the instruction word(s).

() Identifies an indirect address in a register.

[] Identifies an indirect address in memory.

bd Base Displacement

ccc Index into the MC68881/MC68882 Constant ROM

d

n

Displacement Value, n Bits Wide (example: d

16

 is a 16-bit displacement).

LSB Least Significant Bit

LSW Least Significant Word

MSB Most Significant Bit

MSW Most Significant Word

od Outer Displacement

SCALE A scale factor (1, 2, 4, or 8 for no-word, word, long-word, or quad-word scaling, respectively).

SIZE The index register’s size (W for word, L for long word).

{offset:width} Bit field selection.

Register Names

CCR Condition Code Register (lower byte of status register)

DFC Destination Function Code Register

FPcr Any Floating-Point System Control Register (FPCR, FPSR, or FPIAR)

FPm, FPn Any Floating-Point Data Register specified as the source or destination, respectively.

IC, DC, IC/DC Instruction, Data, or Both Caches

MMUSR MMU Status Register

PC Program Counter

Rc Any Non Floating-Point Control Register

SFC Source Function Code Register

SR Status Register

Instruction Set Summary

3-4

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

Table 3-1. Notational Conventions (Concluded)

Register Codes

* General Case

C Carry Bit in CCR

cc Condition Codes from CCR

FC Function Code

N Negative Bit in CCR

U Undefined, Reserved for Motorola Use.

V Overflow Bit in CCR

X Extend Bit in CCR

Z Zero Bit in CCR

— Not Affected or Applicable.

Stack Pointers

ISP Supervisor/Interrupt Stack Pointer

MSP Supervisor/Master Stack Pointer

SP Active Stack Pointer

SSP Supervisor (Master or Interrupt) Stack Pointer

USP User Stack Pointer

Miscellaneous

<ea> Effective Address

<label> Assemble Program Label

<list> List of registers, for example D3–D0.

LB Lower Bound

m Bit m of an Operand

m–n Bits m through n of Operand

UB Upper Bound

Instruction Set Summary

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

3-5

3.1.1 Data Movement Instructions

The MOVE and FMOVE instructions with their associated addressing modes are the basic
means of transferring and storing addresses and data. MOVE instructions transfer byte,
word, and long-word operands from memory to memory, memory to register, register to
memory, and register to register. MOVE instructions transfer word and long-word operands
and ensure that only valid address manipulations are executed. In addition to the general
MOVE instructions, there are several special data movement instructions: MOVE16,
MOVEM, MOVEP, MOVEQ, EXG, LEA, PEA, LINK, and UNLK. The MOVE16 instruction is
an MC68040 extension to the M68000 instruction set.

The FMOVE instructions move operands into, out of, and between floating-point data
registers. FMOVE also moves operands to and from the floating-point control register
(FPCR), floating-point status register (FPSR), and floating-point instruction address register
(FPIAR). For operands moved into a floating-point data register, FSMOVE and FDMOVE
explicitly select single- and double-precision rounding of the result, respectively. FMOVEM
moves any combination of either floating-point data registers or floating-point control
registers. Table 3-2 lists the general format of these integer and floating-point data
movement instructions.

Instruction Set Summary

3-6

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

NOTE: A register list includes any combination of the eight floating-point data registers or any combination of
three control registers (FPCR, FPSR, and FPIAR). If a register list mask resides in a data register, only
floating-point data registers may be specified.

3.1.2 Integer Arithmetic Instructions

The integer arithmetic operations include four basic operations: ADD, SUB, MUL, and DIV.
They also include CMP, CMPM, CMP2, CLR, and NEG. The instruction set includes ADD,
CMP, and SUB instructions for both address and data operations with all operand sizes valid
for data operations. Address operands consist of 16 or 32 bits. The CLR and NEG
instructions apply to all sizes of data operands. Signed and unsigned MUL and DIV
instructions include:

• Word multiply to produce a long-word product.

• Long-word multiply to produce a long-word or quad-word product.

• Long word divided by a word divisor (word quotient and word remainder).

• Long word or quad word divided by a long-word divisor (long-word quotient and long-
word remainder).

Table 3-2. Data Movement Operation Format

Instruction Operand Syntax Operand Size Operation

EXG Rn, Rn 32 Rn

←

→

 Rn

FMOVE FPm,FPn
<ea>,FPn
FPm,<ea>
<ea>,FPcr
FPcr,<ea>

X
B, W, L, S, D, X, P
B, W, L, S, D, X, P

32
32

Source

→

 Destination

FSMOVE,
FDMOVE

FPm,FPn
<ea>,FPn

X
B, W, L, S, D, X

Source

→

 Destination; round destination to single or
double precision.

FMOVEM <ea>,<list>

1

<ea>,Dn

<list>

1

,<ea>
Dn,<ea>

32, X
X

32, X
X

Listed Registers

→

 Destination

Source

→

 Listed Registers

LEA <ea>,An 32 <ea>

→

 An

LINK An,#<d> 16, 32 SP – 4

→

 SP; An

→

 (SP); SP

→

 An, SP + D

→

 SP

MOVE
MOVE16
MOVEA

<ea>,<ea>
<ea>,<ea>
<ea>,An

8, 16, 32
16 bytes

16, 32

→

 32

Source

→

 Destination
Aligned 16-Byte Block

→

 Destination

MOVEM list,<ea>
<ea>,list

16, 32
16, 32

→

 32
Listed Registers

→

 Destination
Source

→

 Listed Registers

MOVEP Dn, (d

16

,An)

(d

16

,An),Dn

16, 32 Dn 31–24

→

 (An + d

n

); Dn 23–16

→

 (An + d

n

 + 2);
 Dn 15–8

→

 (An + d

n

 + 4); Dn 7–0

→

 (An + d

n

 + 6)

(An + d

n

)

→

 Dn 31–24; (An + d

n

 + 2)

→

 Dn 23–16;
 (An + d

n

 + 4)

→

 Dn 15–8; (An + d

n

 + 6)

→

 Dn 7–0

MOVEQ #<data>,Dn 8

→

 32 Immediate Data

→

 Destination

PEA <ea> 32 SP – 4

→

 SP; <ea>

→

 (SP)

UNLK An 32 An

→

 SP; (SP)

→

 An; SP + 4

→

 SP

Instruction Set Summary

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

3-7

A set of extended instructions provides multiprecision and mixed-size arithmetic: ADDX,
SUBX, EXT, and NEGX. Refer to Table 3-3 for a summary of the integer arithmetic
operations. In Table 3-3, X refers to the X-bit in the CCR.

Table 3-3. Integer Arithmetic Operation Format

Instruction Operand Syntax Operand Size Operation

ADD

ADDA

Dn,<ea>
<ea>,Dn
<ea>,An

8, 16, 32
8, 16, 32
16, 32

Source + Destination

→

 Destination

ADDI
ADDQ

#<data>,<ea>
#<data>,<ea>

8, 16, 32
8, 16, 32

Immediate Data + Destination

→

 Destination

ADDX Dn,Dn
–(An), –(An)

8, 16, 32
8, 16, 32

Source + Destination + X

→

 Destination

CLR <ea> 8, 16, 32 0

→

 Destination

CMP
CMPA

<ea>,Dn
<ea>,An

8, 16, 32
16, 32

Destination – Source

CMPI #<data>,<ea> 8, 16, 32 Destination – Immediate Data

CMPM (An)+,(An)+ 8, 16, 32 Destination – Source

CMP2 <ea>,Rn 8, 16, 32 Lower Bound

→

 Rn

→

 Upper Bound

DIVS/DIVU

DIVSL/DIVUL

<ea>,Dn
<ea>,Dr–Dq

<ea>,Dq
<ea>,Dr–Dq

32

÷

16

→

 16,16
64

÷

32

→

 32,32
32

÷

32

→

 32
32

÷

32

→

 32,32

Destination

÷

Source

→

 Destination
(Signed or Unsigned Quotient, Remainder)

EXT

EXTB

Dn
Dn
Dn

8

→

 16
16

→

 32
8

→

 32

Sign-Extended Destination

→

 Destination

MULS/MULU <ea>,Dn
<ea>,Dl

<ea>,Dh–Dl

16 x 16

→

 32
32 x 32

→

 32
32 x 32

→

 64

Source x Destination

→

 Destination
(Signed or Unsigned)

NEG <ea> 8, 16, 32 0 – Destination → Destination

NEGX <ea> 8, 16, 32 0 – Destination – X → Destination

SUB

SUBA

<ea>,Dn
Dn,<ea>
<ea>,An

8, 16, 32
8, 16, 32
16, 32

Destination = Source → Destination

SUBI
SUBQ

#<data>,<ea>
#<data>,<ea>

8, 16, 32
8, 16, 32

Destination – Immediate Data → Destination

SUBX Dn,Dn
–(An), –(An)

8, 16, 32
8, 16, 32

Destination – Source – X → Destination

Instruction Set Summary

3-8 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

3.1.3 Logical Instructions

The logical operation instructions (AND, OR, EOR, and NOT) perform logical operations
with all sizes of integer data operands. A similar set of immediate instructions (ANDI, ORI,
and EORI) provides these logical operations with all sizes of immediate data. Table 3-4
summarizes the logical operations.

3.1.4 Shift and Rotate Instructions

The ASR, ASL, LSR, and LSL instructions provide shift operations in both directions. The
ROR, ROL, ROXR, and ROXL instructions perform rotate (circular shift) operations, with
and without the CCR extend bit (X-bit). All shift and rotate operations can be performed on
either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count can be specified
in the instruction operation word (to shift from 1 – 8 places) or in a register (modulo 64 shift
count).

Memory shift and rotate operations shift word operands one bit position only. The SWAP
instruction exchanges the 16-bit halves of a register. Fast byte swapping is possible by using
the ROR and ROL instructions with a shift count of eight, enhancing the performance of the
shift/rotate instructions. Table 3-5 is a summary of the shift and rotate operations. In Table
3-5, C and X refer to the C-bit and X- bit in the CCR.

Table 3-4. Logical Operation Format

Instruction Operand Syntax Operand Size Operation

AND <ea>,Dn
Dn,<ea>

8, 16, 32
8, 16, 32

Source Λ Destination → Destination

ANDI #<data>,<ea> 8, 16, 32 Immediate Data Λ Destination → Destination

EOR Dn,<ea> 8, 16, 32 Source ⊕ Destination → Destination

EORI #<data>,<ea> 8, 16, 32 Immediate Data ⊕ Destination → Destination

NOT <ea> 8, 16, 32 ~ Destination → Destination

OR <ea>,Dn
Dn,<ea>

8, 16, 32 Source V Destination → Destination

ORI #<data>,<ea> 8, 16, 32 Immediate Data V Destination → Destination

Instruction Set Summary

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 3-9

NOTE: X indicates the extend bit and C the carry bit in the CCR.

Table 3-5. Shift and Rotate Operation Format

 X/C 0

 X/C

 X/C 0

 X/C0

C

C

XC

X C

MSW LSW

ASL Dn, Dn
data , Dn

ea

8, 16, 32
8, 16, 32

16

Instruction Operand Syntax Operand Size

ASR Dn, Dn
data , Dn

ea

8, 16, 32
8, 16, 32

16

LSL Dn, Dn
data , Dn

ea

8, 16, 32
8, 16, 32

16

LSR Dn, Dn
data , Dn

ea

8, 16, 32
8, 16, 32

16

ROL Dn, Dn
data , Dn

ea

8, 16, 32
8, 16, 32

16

ROR Dn, Dn
data , Dn

ea

8, 16, 32
8, 16, 32

16

ROXL Dn, Dn
data , Dn

ea

8, 16, 32
8, 16, 32

16

ROXR Dn, Dn
data , Dn

ea

8, 16, 32
8, 16, 32

16

SWAP Dn 32

Operation

Instruction Set Summary

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 3-17

3.2 INTEGER UNIT CONDITION CODE COMPUTATION

Many integer instructions affect the CCR to indicate the instruction,s results. Program and
system control instructions also use certain combinations of these bits to control program
and system flow. The condition codes meet consistency criteria across instructions, uses,
and instances. They also meet the criteria of meaningful results, where no change occurs
unless it provides useful information. Refer to Section 1 Introduction for details concerning
the CCR.

Table 3-18 lists the integer condition code computations for instructions and Table 3-19 lists
the condition names, encodings, and tests for the conditional branch and set instructions.
The test associated with each condition is a logical formula using the current states of the
condition codes. If this formula evaluates to one, the condition is true. If the formula
evaluates to zero, the condition is false. For example, the T condition is always true, and the
EQ condition is true only if the Z-bit condition code is currently true.

Table 3-17. Monadic Floating-Point Operations

Instruction Operation Instruction Operation

FABS Absolute Value FLOGN In(x)

FACOS Arc Cosine FLOGNP1 In(x + 1)

FASIN Arc Sine FLOG10 Log10(x)

FATAN Hyperbolic Art Tangent FLOG2 Log2(x)

FCOS Cosine FNEG Negate

FCOSH Hyperbolic Cosine FSIN Sine

FETOX ex FSINH Hyperbolic Sine

FETOXM1 ex – 1 FSQRT Square Root

FGETEXP Extract Exponent FTAN Tangent

FGETMAN Extract Mantissa FTANH Hyperbolic Tangent

FINT Extract Integer Part FTENTOX 10x

FINTRZ Extract Integer Part, Rounded-to-Zero FTWOTOX 2x

Instruction Set Summary

3-18 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Table 3-18. Integer Unit Condition Code Computations

Operations X N Z V C Special Definition

ABCD * U ? U ? C = Decimal Carry
Z = Z Λ Rm Λ …Λ R0

ADD, ADDI, ADDQ * * * ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm

ADDX * * ? ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm
Z = Z Λ Rm Λ …Λ R0

AND, ANDI, EOR, EORI,
MOVEQ, MOVE, OR, ORI,
CLR, EXT, EXTB, NOT, TAS, TST

— * * 0 0

CHK — * U U U

CHK2, CMP2 — U ? U ? Z = (R = LB) V (R = UB)
C = (LB ≤ UB) Λ (IR < LB) V (R > UB))
V (UB < LB) Λ (R > UB) Λ (R < LB)

SUB, SUBI, SUBQ * * * ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm

SUBX * * ? ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm
Z = Z Λ Rm Λ …Λ R0

CAS, CAS2, CMP, CMPA, CMPI,
CMPM

— * * ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm

DIVS, DUVU — * * ? 0 V = Division Overflow

MULS, MULU — * * ? 0 V = Multiplication Overflow

SBCD, NBCD * U ? U ? C = Decimal Borrow
Z = Z Λ Rm Λ …Λ R0

NEG * * * ? ? V = Dm Λ Rm
C = Dm V Rm

NEGX * * ? ? ? V = Dm Λ Rm
C = Dm V Rm
Z = Z Λ Rm Λ …Λ R0

BTST, BCHG, BSET, BCLR — — ? — — Z = Dn

BFTST, BFCHG, BFSET, BFCLR — ? ? 0 0 N = Dm
Z = Dn Λ Dm–1 Λ …Λ D0

BFEXTS, BFEXTU, BFFFO — ? ? 0 0 N = Sm
Z = Sm Λ Sm–1 Λ…Λ S0

BFINS — ? ? 0 0 N = Dm
Z = Dm Λ Dm–1 Λ…Λ D0

ASL * * * ? ? V = Dm Λ Dm–1 V…V Dm– r V Dm Λ
(DM –1 V …+ Dm – r)

C = Dm– r+1

ASL (r = 0) — * * 0 0

LSL, ROXL * * * 0 ? C = Dm – r + 1

Instruction Set Summary

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 3-19

NOTES:
N = Logical Not N
V = Logical Not V
Z = Logical Not Z
*Not available for the Bcc instruction.

LSR (r = 0) — * * 0 0

ROXL (r = 0) — * * 0 ? X = C

ROL — * * 0 ? C = Dm – r + 1

ROL (r = 0) — * * 0 0

ASR, LSR, ROXR * * * 0 ? C = Dr – 1

ASR, LSR (r = 0) — * * 0 0

ROXR (r = 0) — * * 0 ? X = C

ROR — * * 0 ? C = Dr – 1

ROR (r = 0) — * * 0 0

? = Other—See Special Definition Rm = Result Operand (MSB)

N = Result Operand (MSB) Rm = Not Result Operand (MSB)

Z = Rm Λ…Λ R0 R = Register Tested

Sm = Source Operand (MSB) r = Shift Count

Dm = Destination Operand (MSB)

Table 3-19. Conditional Tests

Mnemonic Condition Encoding Test

T* True 0000 1

F* False 0001 0

HI High 0010 C Λ Z

LS Low or Same 0011 C V Z

CC(HI) Carry Clear 0100 C

CS(LO) Carry Set 0101 C

NE Not Equal 0110 Z

EQ Equal 0111 Z

VC Overflow Clear 1000 V

VS Overflow Set 1001 V

PL Plus 1010 N

MI Minus 1011 N

GE Greater or Equal 1100 N Λ V V N Λ V

LT Less Than 1101 N Λ V V N Λ V

GT Greater Than 1110 N Λ V Λ Z V N Λ V Λ Z

LE Less or Equal 1111 Z V N Λ V V N Λ V

Table 3-18. Integer Unit Condition Code Computations (Continued)

Operations X N Z V C Special Definition

Instruction Set Summary

3-32 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

3.7 INSTRUCTION DESCRIPTIONS

Section 4, 5, 6, and 7 contain detailed information about each instruction in the M68000
family instruction set. Each section arranges the instruction in alphabetical order by
instruction mnemonic and includes descriptions of the instruction’s notation and format.
Figure 3-3 illustrates the format of the instruction descriptions. Note that the illustration is an
amalgamation of the various parts that make up an instruction description. Instruction
descriptions for the integer unit differ slightly from those for the floating-point unit; i.e. there
are no operation tables included for integer unit instruction descriptions.

The size attribute line specifies the size of the operands of an instruction. When an
instruction uses operands of more than one size, the mnemonic of the instruction includes
a suffix such as:

.B—Byte Operands

.W—Word Operands

.L—Long-Word Operands

.S—Single-Precision Real Operands

.D—Double-Precision Real Operands

.X—Extended-Precision Real Operands

.P—Packed BCD Real Operands

The instruction format specifies the bit pattern and fields of the operation and command
words, and any other words that are always part of the instruction. The effective address
extensions are not explicitly illustrated. The extension words, if any, follow immediately after
the illustrated portions of the instructions.

Instruction Set Summary

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 3-33

.

Figure 3-3. Instruction Description Format

ABCD
Operation:

Assembler
System:

Attributes:

Description:

Operation Table:

Status Register:

Instruction Format:

Instruction Fields:

 Effective Address Field - Determines

Add Decimal with Ex
(MC68020, MC68030,

Absolute value of s

FABSxfm tx <ee
FABSX FPm
FABSX FPn

Forms = (Byte, Word,

Converts the source o
absolute value of that

Result

Destination Sourc

A

NOTE: If the source operation

Condition Codes:
Quotient Byte:

Exception Byte:

Affected by
Not Affected
BSUN
SNAN
OPERR
OVRL

Accrued Exception Byte:

15 14 13 12 11 10

0

0 0

1

1

1 1 1
SOURCE

SPECIFIER

INSTRUCTION NAME

APPLICABLE PROCESSORS

OPERATION DESCRIPTION

INSTRUCTION'S ASSEMBLER SYNTAX

SIZE ATRIBUTE

TEXT DESCRIPTION OF INSTRUCTION OPERATION

APPLICABLE RESULT OF FLOATING-POINT OPERATION

EFFECTS ON INTEGER CONDITION CODES
OR FLOATING-POINT STATUS REGISTER

INSTRUCTION FORMAT

DEFINITIONS AND ALLOWED VALUES FOR THE
INSTRUCTION FORMAT FIELDS

Integer Instructions

4-4

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

ADD

Add

ADD

(M68000 Family)

Operation:

Source + Destination

→

 Destination

Assembler

ADD < ea > ,Dn

Syntax:

ADD Dn, < ea >

Attributes:

Size = (Byte, Word, Long)

Description:

Adds the source operand to the destination operand using binary addition and
stores the result in the destination location. The size of the operation may be specified
as byte, word, or long. The mode of the instruction indicates which operand is the
source and which is the destination, as well as the operand size.

Condition Codes:

X — Set the same as the carry bit.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.

Instruction Format:

X N Z V C

∗ ∗ ∗ ∗ ∗

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

Integer Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

4-5

ADD

Add

ADD

(M68000 Family)

Instruction Fields:

Register field—Specifies any of the eight data registers.

Opmode field

Effective Address field—Determines addressing mode.

a. If the location specified is a source operand, all addressing modes can be used
as listed in the following tables:

*Word and long only
**Can be used with CPU32.

Byte Word Long Operation

000 001 010 < ea > + Dn

→

 Dn
100 101 110 Dn + < ea >

→

 < ea >

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d

16

,An) 101 reg. number:An (d

16

,PC) 111 010

(d

8

,An,Xn) 110 reg. number:An (d

8

,PC,Xn) 111 011

MC68020, MC68030, and MC68040 only

(bd,An,Xn)** 110 reg. number:An (bd,PC,Xn)† 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Integer Instructions

4-6

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

ADD

Add

ADD

(M68000 Family)

b. If the location specified is a destination operand, only memory alterable
addressing modes can be used as listed in the following tables:

*Can be used with CPU32

NOTE

The Dn mode is used when the destination is a data register; the
destination < ea > mode is invalid for a data register.

ADDA is used when the destination is an address register. ADDI
and ADDQ are used when the source is immediate data. Most
assemblers automatically make this distinction.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d

16

,An) 101 reg. number:An (d

16

,PC) — —

(d

8

,An,Xn) 110 reg. number:An (d

8

,PC,Xn) — —

MC68020, MC68030, and MC68040 only

(bd,An,Xn)* 110 reg. number:An (bd,PC,Xn)* — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

Integer Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

4-7

ADDA

Add Address

ADDA

(M68000 Family)

Operation:

Source + Destination

→

 Destination

Assembler
Syntax:

ADDA < ea > , An

Attributes:

Size = (Word, Long)

Description:

Adds the source operand to the destination address register and stores the
result in the address register. The size of the operation may be specified as word or
long. The entire destination address register is used regardless of the operation size.

Condition Codes:

Not affected.

Instruction Format:

Instruction Fields:

Register field—Specifies any of the eight address registers. This is always the
destination.

Opmode field—Specifies the size of the operation.
011— Word operation; the source operand is sign-extended to a long operand and

the operation is performed on the address register using all 32 bits.
111— Long operation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

Integer Instructions

4-8

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

MOTOROLA

ADDA

Add Address

ADDA

(M68000 Family)

Effective Address field—Specifies the source operand. All addressing modes can be
used as listed in the following tables:

*Can be used with CPU32

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d

16

,An) 101 reg. number:An (d

16

,PC) 111 010

(d

8

,An,Xn) 110 reg. number:An (d

8

,PC,Xn) 111 011

MC68020, MC68030, and MC68040 only

(bd,An,Xn)* 110 reg. number:An (bd,PC,Xn)* 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Integer Instructions

MOTOROLA

M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

4-9

ADDI

Add Immediate

ADDI

(M68000 Family)

Operation:

Immediate Data + Destination → Destination

Assembler
Syntax: ADDI # < data > , < ea >

Attributes: Size = (Byte, Word, Long)

Description: Adds the immediate data to the destination operand and stores the result in
the destination location. The size of the operation may be specified as byte, word, or
long. The size of the immediate data matches the operation size.

Condition Codes:

X — Set the same as the carry bit.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.

Instruction Format:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

16-BIT WORD DATA 8-BIT BYTE DATA

32-BIT LONG DATA

Integer Instructions

4-10 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

ADDI Add Immediate ADDI
(M68000 Family)

Instruction Fields:

Size field—Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation

Effective Address field—Specifies the destination operand. Only data alterable
addressing modes can be used as listed in the following tables:

*Can be used with CPU32

Immediate field—Data immediately following the instruction.
If size = 00, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

MC68020, MC68030, and MC68040 only

(bd,An,Xn)* 110 reg. number:An (bd,PC,Xn)* — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-11

ADDQ Add Quick ADDQ
(M68000 Family)

Operation: Immediate Data + Destination → Destination

Assembler
Syntax: ADDQ # < data > , < ea >

Attributes: Size = (Byte, Word, Long)

Description: Adds an immediate value of one to eight to the operand at the destination
location. The size of the operation may be specified as byte, word, or long. Word and
long operations are also allowed on the address registers. When adding to address
registers, the condition codes are not altered, and the entire destination address
register is used regardless of the operation size.

Condition Codes:

X — Set the same as the carry bit.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow occurs; cleared otherwise.
C — Set if a carry occurs; cleared otherwise.

The condition codes are not affected when the destination is an address register.

Instruction Format:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 DATA 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

Integer Instructions

4-12 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

ADDQ Add Quick ADDQ
(M68000 Family)

Instruction Fields:

Data field—Three bits of immediate data representing eight values (0 – 7), with the
immediate value zero representing a value of eight.

Size field—Specifies the size of the operation.
00— Byte operation
01— Word operation
10— Long operation

Effective Address field—Specifies the destination location. Only alterable addressing
modes can be used as listed in the following tables:

*Word and long only.
**Can be used with CPU32.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

MC68020, MC68030, and MC68040 only

(bd,An,Xn** 110 reg. number:An (bd,PC,Xn)† — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-13

ADDX Add Extended ADDX
(M68000 Family)

Operation: Source + Destination + X → Destination

Assembler ADDX Dy,Dx
Syntax: ADDX – (Ay), – (Ax)

Attributes: Size = (Byte, Word, Long)

Description: Adds the source operand and the extend bit to the destination operand and
stores the result in the destination location. The operands can be addressed in two
different ways:

1. Data register to data register—The data registers specified in the instruction
contain the operands.

2. Memory to memory—The address registers specified in the instruction address
the operands using the predecrement addressing mode.

The size of the operation can be specified as byte, word, or long.

Condition Codes:

X — Set the same as the carry bit.
N — Set if the result is negative; cleared otherwise.
Z — Cleared if the result is nonzero; unchanged otherwise.
V — Set if an overflow occurs; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.

NOTE

Normally, the Z condition code bit is set via programming before
the start of an operation. This allows successful tests for zero
results upon completion of multiple-precision operations.

X N Z V C

* * * * *

Integer Instructions

4-14 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

ADDX Add Extended ADDX
(M68000 Family)

Instruction Format:

Instruction Fields:

Register Rx field—Specifies the destination register.
If R/M = 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement addressing mode.

Size field—Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation

R/M field—Specifies the operand address mode.
0 — The operation is data register to data register.
1 — The operation is memory to memory.

Register Ry field—Specifies the source register.
If R/M = 0, specifies a data register.
If R/M = 1, specifies an address register for the predecrement addressing mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 REGISTER Rx 1 SIZE 0 0 R/M REGISTER Ry

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-15

AND AND Logical AND
(M68000 Family)

Operation: Source L Destination → Destination

Assembler AND < ea > ,Dn
Syntax: AND Dn, < ea >

Attributes: Size = (Byte, Word, Long)

Description: Performs an AND operation of the source operand with the destination
operand and stores the result in the destination location. The size of the operation can
be specified as byte, word, or long. The contents of an address register may not be
used as an operand.

Condition Codes:

X — Not affected.
N — Set if the most significant bit of the result is set; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Always cleared.

Instruction Format:

Instruction Fields:

Register field—Specifies any of the eight data registers.

Opmode field

X N Z V C
— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

Byte Word Long Operation
000 001 010 < ea > Λ Dn → Dn
100 101 110 Dn Λ < ea > → < ea >

Integer Instructions

4-16 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

AND AND Logical AND
(M68000 Family)

Effective Address field—Determines addressing mode.

a. If the location specified is a source operand, only data addressing modes can be
used as listed in the following tables:

*Can be used with CPU32.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

MC68020, MC68030, and MC68040 only

(bd,An,Xn* 110 reg. number:An (bd,PC,Xn)* 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-17

AND AND Logical AND
(M68000 Family)

b. If the location specified is a destination operand, only memory alterable address-
ing modes can be used as listed in the following tables:

*Can be used with CPU32.

NOTE

The Dn mode is used when the destination is a data register; the
destination < ea > mode is invalid for a data register.

Most assemblers use ANDI when the source is immediate data.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

MC68020, MC68030, and MC68040 only

(bd,An,Xn)* 110 reg. number:An (bd,PC,Xn)* — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

Integer Instructions

4-18 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

ANDI AND Immediate ANDI
(M68000 Family)

Operation: Immediate Data Λ Destination → Destination

Assembler
Syntax: ANDI # < data > , < ea >

Attributes: Size = (Byte, Word, Long)

Description: Performs an AND operation of the immediate data with the destination
operand and stores the result in the destination location. The size of the operation can
be specified as byte, word, or long. The size of the immediate data matches the
operation size.

Condition Codes:

X — Not affected.
N — Set if the most significant bit of the result is set; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Always cleared.

Instruction Format:

X N Z V C
— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

16-BIT WORD DATA 8-BIT BYTE DATA

32-BIT LONG DATA

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-19

ANDI AND Immediate ANDI
(M68000 Family)

Instruction Fields:

Size field—Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation

Effective Address field—Specifies the destination operand. Only data alterable
addressing modes can be used as listed in the following tables:

*Can be used with CPU32

Immediate field—Data immediately following the instruction.
If size = 00, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

MC68020, MC68030, and MC68040 only

(bd,An,Xn)* 110 reg. number:An (bd,PC,Xn)* — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

Integer Instructions

4-20 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

ANDI ANDI
to CCR CCR AND Immediate to CCR

(M68000 Family)

Operation: Source Λ CCR → CCR

Assembler
Syntax: ANDI # < data > ,CCR

Attributes: Size = (Byte)

Description: Performs an AND operation of the immediate operand with the condition
codes and stores the result in the low-order byte of the status register.

Condition Codes:

X — Cleared if bit 4 of immediate operand is zero; unchanged otherwise.
N — Cleared if bit 3 of immediate operand is zero; unchanged otherwise.
Z — Cleared if bit 2 of immediate operand is zero; unchanged otherwise.
V — Cleared if bit 1 of immediate operand is zero; unchanged otherwise.
C — Cleared if bit 0 of immediate operand is zero; unchanged otherwise.

Instruction Format:

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 8-BIT BYTE DATA

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-21

ASL, ASR Arithmetic Shift ASL, ASR
(M68000 Family)

Operation: Destination Shifted By Count → Destination

Assembler ASd Dx,Dy
Syntax: ASd # < data > ,Dy

ASd < ea >
where d is direction, L or R

Attributes: Size = (Byte, Word, Long)

Description: Arithmetically shifts the bits of the operand in the direction (L or R) specified.
The carry bit receives the last bit shifted out of the operand. The shift count for the
shifting of a register may be specified in two different ways:

1. Immediate—The shift count is specified in the instruction (shift range, 1 – 8).

2. Register—The shift count is the value in the data register specified in instruction
modulo 64.

The size of the operation can be specified as byte, word, or long. An operand in mem-
ory can be shifted one bit only, and the operand size is restricted to a word.

For ASL, the operand is shifted left; the number of positions shifted is the shift count.
Bits shifted out of the high-order bit go to both the carry and the extend bits; zeros are
shifted into the low-order bit. The overflow bit indicates if any sign changes occur dur-
ing the shift.

.

C OPERAND O

X

ASL:

Integer Instructions

4-22 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

ASL, ASR Arithmetic Shift ASL, ASR
(M68000 Family)

For ASR, the operand is shifted right; the number of positions shifted is the shift count.
Bits shifted out of the low-order bit go to both the carry and the extend bits; the sign bit
(MSB) is shifted into the high-order bit.

Condition Codes:

X — Set according to the last bit shifted out of the operand; unaffected for a shift
count of zero.

N — Set if the most significant bit of the result is set; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if the most significant bit is changed at any time during the shift operation;

cleared otherwise.
C — Set according to the last bit shifted out of the operand; cleared for a shift count

of zero.

Instruction Format:

REGISTER SHIFTS

Instruction Fields:

Count/Register field—Specifies shift count or register that contains the shift count:
If i/r = 0, this field contains the shift count. The values 1 – 7 represent counts of 1 –

7; a value of zero represents a count of eight.

If i/r = 1, this field specifies the data register that contains the shift count (modulo 64).

X N Z V C

* * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0
COUNT?

REGISTER
dr SIZE i/r 0 0 REGISTER

OPERAND C

X

ASR:

MSB

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-23

ASL, ASR Arithmetic Shift ASL, ASR
(M68000 Family)

dr field—Specifies the direction of the shift.
0 — Shift right
1 — Shift left

Size field—Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation

i/r field
If i/r = 0, specifies immediate shift count.
If i/r = 1, specifies register shift count.

Register field—Specifies a data register to be shifted.

Instruction Format:

MEMORY SHIFTS

Instruction Fields:

dr field—Specifies the direction of the shift.
0 — Shift right
1 — Shift left

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 0 0 dr 1 1
EFFECTIVE ADDRESS

MODE REGISTER

Integer Instructions

4-24 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

ASL, ASR Arithmetic Shift ASL, ASR
(M68000 Family)

Effective Address field—Specifies the operand to be shifted. Only memory alterable
addressing modes can be used as listed in the following tables:

*Can be used with CPU32.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

MC68020, MC68030, and MC68040 only

(bd,An,Xn)* 110 reg. number:An (bd,PC,Xn)* — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-25

Bcc Branch Conditionally Bcc
(M68000 Family)

Operation: If Condition True
Then PC + dn → PC

Assembler
Syntax: Bcc < label >

Attributes: Size = (Byte, Word, Long*)

*(MC68020, MC68030, and MC68040 only)

Description: If the specified condition is true, program execution continues at location (PC)
+ displacement. The program counter contains the address of the instruction word for
the Bcc instruction plus two. The displacement is a twos-complement integer that
represents the relative distance in bytes from the current program counter to the
destination program counter. If the 8-bit displacement field in the instruction word is
zero, a 16-bit displacement (the word immediately following the instruction) is used. If
the 8-bit displacement field in the instruction word is all ones ($FF), the 32-bit
displacement (long word immediately following the instruction) is used. Condition code
cc specifies one of the following conditional tests (refer to Table 3-19 for more
information on these conditional tests):

Condition Codes:

Not affected.

Mnemonic Condition Mnemonic Condition

CC(HI) Carry Clear LS Low or Same

CS(LO) Carry Set LT Less Than

EQ Equal MI Minus

GE Greater or Equal NE Not Equal

GT Greater Than PL Plus

HI High VC Overflow Clear

LE Less or Equal VS Overflow Set

Integer Instructions

4-26 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

Bcc Branch Conditionally Bcc
(M68000 Family)

Instruction Format:

Instruction Fields:

Condition field—The binary code for one of the conditions listed in the table.

8-Bit Displacement field—Twos complement integer specifying the number of bytes
between the branch instruction and the next instruction to be executed if the
condition is met.

16-Bit Displacement field—Used for the displacement when the 8-bit displacement
field contains $00.

32-Bit Displacement field—Used for the displacement when the 8-bit displacement
field contains $FF.

NOTE

A branch to the immediately following instruction automatically
uses the 16-bit displacement format because the 8-bit
displacement field contains $00 (zero offset).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 CONDITION 8-BIT DISPLACEMENT

16-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $00

32-BIT DISPLACEMENT IF 8-BIT DISPLACEMENT = $FF

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-75

CMP Compare CMP
(M68000 Family)

Operation: Destination – Source → cc

Assembler
Syntax: CMP < ea > , Dn

Attributes: Size = (Byte, Word, Long)

Description: Subtracts the source operand from the destination data register and sets the
condition codes according to the result; the data register is not changed. The size of
the operation can be byte, word, or long.

Condition Codes:

X — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow occurs; cleared otherwise.
C — Set if a borrow occurs; cleared otherwise.

Instruction Format:

Instruction Fields:

Register field—Specifies the destination data register.

Opmode field

X N Z V C
— ∗ ∗ ∗ ∗

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

Byte Word Long Operation
000 001 010 Dn – < ea >

Integer Instructions

4-76 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

CMP Compare CMP
(M68000 Family)

Effective Address field—Specifies the source operand. All addressing modes can be
used as listed in the following tables:

*Word and Long only.
**Can be used with CPU32.

NOTE

CMPA is used when the destination is an address register. CMPI
is used when the source is immediate data. CMPM is used for
memory-to-memory compares. Most assemblers automatically
make the distinction.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An* 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

MC68020, MC68030, and MC68040 only

(bd,An,Xn)** 110 reg. number:An (bd,PC,Xn)† 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-77

CMPA Compare Address CMPA
(M68000 Family)

Operation: Destination – Source → cc

Assembler
Syntax: CMPA < ea > , An

Attributes: Size = (Word, Long)

Description: Subtracts the source operand from the destination address register and sets
the condition codes according to the result; the address register is not changed. The
size of the operation can be specified as word or long. Word length source operands
are sign- extended to 32 bits for comparison.

Condition Codes:

X — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Instruction Format:

X N Z V C
— ∗ ∗ ∗ ∗

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

Integer Instructions

4-78 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

CMPA Compare Address CMPA
(M68000 Family)

Instruction Fields:

Register field—Specifies the destination address register.

Opmode field—Specifies the size of the operation.
011— Word operation; the source operand is sign-extended to a long operand, and

the operation is performed on the address register using all 32 bits.
111— Long operation.

Effective Address field—Specifies the source operand. All addressing modes can be
used as listed in the following tables:

*Can be used with CPU32.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

MC68020, MC68030, and MC68040 only

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)* 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-79

CMPI Compare Immediate CMPI
(M68000 Family)

Operation: Destination – Immediate Data → cc

Assembler
Syntax: CMPI # < data > , < ea >

Attributes: Size = (Byte, Word, Long)

Description: Subtracts the immediate data from the destination operand and sets the
condition codes according to the result; the destination location is not changed. The
size of the operation may be specified as byte, word, or long. The size of the immediate
data matches the operation size.

Condition Codes:

X — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow occurs; cleared otherwise.
C — Set if a borrow occurs; cleared otherwise.

Instruction Format:

X N Z V C
— ∗ ∗ ∗ ∗

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 SIZE
EFFECTIVE ADDRESS

MODE REGISTER

16-BIT WORD DATA 8-BIT BYTE DATA

32-BIT LONG DATA

Integer Instructions

4-80 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

CMPI Compare Immediate CMPI
(M68000 Family)

Instruction Fields:

Size field—Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation

Effective Address field—Specifies the destination operand. Only data addressing
modes can be used as listed in the following tables:

*PC relative addressing modes do not apply to MC68000, MC680008, or MC6801.
**Can be used with CPU32.

Immediate field—Data immediately following the instruction.
If size = 00, the data is the low-order byte of the immediate word.
If size = 01, the data is the entire immediate word.
If size = 10, the data is the next two immediate words.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC)* 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn)* 111 011

MC68020, MC68030, and MC68040 only

(bd,An,Xn)** 110 reg. number:An (bd,PC,Xn)† 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-81

CMPM Compare Memory CMPM
(M68000 Family)

Operation: Destination – Source → cc

Assembler
Syntax: CMPM (Ay) + ,(Ax) +

Attributes: Size = (Byte, Word, Long)

Description: Subtracts the source operand from the destination operand and sets the
condition codes according to the results; the destination location is not changed. The
operands are always addressed with the postincrement addressing mode, using the
address registers specified in the instruction. The size of the operation may be
specified as byte, word, or long.

Condition Codes:

X — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.

Instruction Format:

Instruction Fields:

Register Ax field—(always the destination) Specifies an address register in the
postincrement addressing mode.

Size field—Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation

Register Ay field—(always the source) Specifies an address register in the
postincrement addressing mode.

X N Z V C
— ∗ ∗ ∗ ∗

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 REGISTER Ax 1 SIZE 0 0 1 REGISTER Ay

Integer Instructions

4-90 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

DBcc Test Condition, Decrement, and Branch DBcc
(M68000 Family)

Operation: If Condition False
Then (Dn – 1 → Dn; If Dn ≠ – 1 Then PC + dn → PC)

Assembler
Syntax: DBcc Dn, < label >

Attributes: Size = (Word)

Description: Controls a loop of instructions. The parameters are a condition code, a data
register (counter), and a displacement value. The instruction first tests the condition for
termination; if it is true, no operation is performed. If the termination condition is not
true, the low-order 16 bits of the counter data register decrement by one. If the result
is – 1, execution continues with the next instruction. If the result is not equal to – 1,
execution continues at the location indicated by the current value of the program
counter plus the sign-extended 16-bit displacement. The value in the program counter
is the address of the instruction word of the DBcc instruction plus two. The
displacement is a twos complement integer that represents the relative distance in
bytes from the current program counter to the destination program counter. Condition
code cc specifies one of the following conditional tests (refer to Table 3-19 for more
information on these conditional tests):

Condition Codes:

Not affected.

Mnemonic Condition Mnemonic Condition

CC(HI) Carry Clear LS Low or Same

CS(LO) Carry Set LT Less Than

EQ Equal MI Minus

F False NE Not Equal

GE Greater or Equal PL Plus

GT Greater Than T True

HI High VC Overflow Clear

LE Less or Equal VS Overflow Set

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-91

DBcc Test Condition, Decrement, and Branch DBcc
(M68000 Family)

Instruction Format:

Instruction Fields:

Condition field—The binary code for one of the conditions listed in the table.

Register field—Specifies the data register used as the counter.

Displacement field—Specifies the number of bytes to branch.

NOTE

The terminating condition is similar to the UNTIL loop clauses of
high-level languages. For example: DBMI can be stated as
"decrement and branch until minus".

Most assemblers accept DBRA for DBF for use when only a
count terminates the loop (no condition is tested).

A program can enter a loop at the beginning or by branching to
the trailing DBcc instruction. Entering the loop at the beginning
is useful for indexed addressing modes and dynamically
specified bit operations. In this case, the control index count
must be one less than the desired number of loop executions.
However, when entering a loop by branching directly to the
trailing DBcc instruction, the control count should equal the loop
execution count. In this case, if a zero count occurs, the DBcc
instruction does not branch, and the main loop is not executed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 CONDITION 1 1 0 0 1 REGISTER

16-BIT DISPLACEMENT

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-109

JSR Jump to Subroutine JSR
(M68000 Family)

Operation: SP – 4 → Sp; PC → (SP); Destination Address → PC

Assembler
Syntax: JSR < ea >

Attributes: Unsized

Description: Pushes the long-word address of the instruction immediately following the
JSR instruction onto the system stack. Program execution then continues at the
address specified in the instruction.

Condition Codes:

Not affected.

Instruction Format:

Instruction Field:

Effective Address field—Specifies the address of the next instruction. Only control
addressing modes can be used as listed in the following tables:

*Can be used with CPU32.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 1 0
EFFECTIVE ADDRESS

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + — —

– (An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

MC68020, MC68030, and MC68040 only

(bd,An,Xn)* 110 reg. number:An (bd,PC,Xn)* 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Integer Instructions

4-110 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

LEA Load Effective Address LEA
(M68000 Family)

Operation: < ea > → An

Assembler
Syntax: LEA < ea > ,An

Attributes: Size = (Long)

Description: Loads the effective address into the specified address register. All 32 bits of
the address register are affected by this instruction.

Condition Codes:

Not affected.

Instruction Format:

Instruction Fields:

Register field—Specifies the address register to be updated with the effective address.

Effective Address field—Specifies the address to be loaded into the address register.
Only control addressing modes can be used as listed in the following tables:

*Can be used with CPU32.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 REGISTER 1 1 1
EFFECTIVE ADDRESS

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + — —

– (An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

MC68020, MC68030, and MC68040 only

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn)* 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-113

LSL, LSR Logical Shift LSL, LSR
(M68000 Family)

Operation: Destination Shifted By Count → Destination

Assembler LSd Dx,Dy
Syntax: LSd # < data > ,Dy

LSd < ea >
where d is direction, L or R

Attributes: Size = (Byte, Word, Long)

Description: Shifts the bits of the operand in the direction specified (L or R). The carry bit
receives the last bit shifted out of the operand. The shift count for the shifting of a
register is specified in two different ways:

1. Immediate—The shift count (1 – 8) is specified in the instruction.

2. Register—The shift count is the value in the data register specified in the in-
struction modulo 64.

The size of the operation for register destinations may be specified as byte, word, or
long. The contents of memory, < ea > , can be shifted one bit only, and the operand
size is restricted to a word.

The LSL instruction shifts the operand to the left the number of positions specified as
the shift count. Bits shifted out of the high-order bit go to both the carry and the extend
bits; zeros are shifted into the low-order bit.

.

The LSR instruction shifts the operand to the right the number of positions specified as
the shift count. Bits shifted out of the low-order bit go to both the carry and the extend
bits; zeros are shifted into the high-order bit.

.

C OPERAND O

X

LSL:

O OPERAND C

X

LSR:

Integer Instructions

4-114 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

LSL, LSR Logical Shift LSL, LSR
(M68000 Family)

Condition Codes:

X — Set according to the last bit shifted out of the operand; unaffected for a shift
count of zero.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Set according to the last bit shifted out of the operand; cleared for a shift count

of zero.

Instruction Format:

REGISTER SHIFTS

Instruction Fields:

Count/Register field

If i/r = 0, this field contains the shift count. The values 1 – 7 represent shifts of 1 – 7;
value of zero specifies a shift count of eight.

If i/r = 1, the data register specified in this field contains the shift count (modulo 64).

dr field—Specifies the direction of the shift.
0 — Shift right
1 — Shift left

Size field—Specifies the size of the operation.
00 — Byte operation
01 — Word operation
10 — Long operation i/r field
If i/r = 0, specifies immediate shift count.
If i/r = 1, specifies register shift count.

Register field—Specifies a data register to be shifted.

X N Z V C
∗ ∗ ∗ 0 ∗

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0
COUNT/

REGISTER
dr SIZE i/r 0 1 REGISTER

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-115

LSL, LSR Logical Shift LSL, LSR
(M68000 Family)

Instruction Format:

MEMORY SHIFTS

Instruction Fields:

dr field—Specifies the direction of the shift.
0 — Shift right
1 — Shift left

Effective Address field—Specifies the operand to be shifted. Only memory alterable
addressing modes can be used as listed in the following tables:

*Can be used with CPU32.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 0 1 dr 1 1
EFFECTIVE ADDRESS

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

MC68020, MC68030, and MC68040 only

(bd,An,Xn)* 110 reg. number:An (bd,PC,Xn)* — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

Integer Instructions

4-116 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOVE Move Data from Source to Destination MOVE
(M68000 Family)

Operation: Source → Destination

Assembler
Syntax: MOVE < ea > , < ea >

Attributes: Size = (Byte, Word, Long)

Description: Moves the data at the source to the destination location and sets the condition
codes according to the data. The size of the operation may be specified as byte, word,
or long. Condition Codes:

X — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Always cleared.

Instruction Format:

Instruction Fields:

Size field—Specifies the size of the operand to be moved.
01 — Byte operation
11 — Word operation
10 — Long operation

X N Z V C
— ∗ ∗ 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 SIZE
DESTINATION SOURCE

REGISTER MODE MODE REGISTER

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-117

MOVE Move Data from Source to Destination MOVE
(M68000 Family)

Destination Effective Address field—Specifies the destination location. Only data
alterable addressing modes can be used as listed in the following tables:

*Can be used with CPU32.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

MC68020, MC68030, and MC68040 only

(bd,An,Xn)* 110 reg. number:An (bd,PC,Xn)* — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

Integer Instructions

4-118 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOVE Move Data from Source to Destination MOVE
(M68000 Family)

Source Effective Address field—Specifies the source operand. All addressing modes
can be used as listed in the following tables:

*For byte size operation, address register direct is not allowed.
**Can be used with CPU32.

NOTE

Most assemblers use MOVEA when the destination is an
address register.

MOVEQ can be used to move an immediate 8-bit value to a data
register.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

MC68020, MC68030, and MC68040 only

(bd,An,Xn)** 110 reg. number:An (bd,PC,Xn)** 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-119

MOVEA Move Address MOVEA
(M68000 Family)

Operation: Source → Destination

Assembler
Syntax: MOVEA < ea > ,An

Attributes: Size = (Word, Long)

Description: Moves the contents of the source to the destination address register. The size
of the operation is specified as word or long. Word-size source operands are sign-
extended to 32-bit quantities.

Condition Codes:

Not affected.

Instruction Format:

Instruction Fields:

Size field—Specifies the size of the operand to be moved.
11 — Word operation; the source operand is sign-extended to a long operand and

all 32 bits are loaded into the address register.
10 — Long operation.

Destination Register field—Specifies the destination address register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 SIZE
DESTINATION

REGISTER
0 0 1

SOURCE

MODE REGISTER

Integer Instructions

4-120 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

MOVEA Move Address MOVEA
(M68000 Family)

Effective Address field—Specifies the location of the source operand. All addressing
modes can be used as listed in the following tables:

*Can be used with CPU32.

Addressing Mode Mode Register Addressing Mode Mode Register

Dn 000 reg. number:Dn (xxx).W 111 000

An 001 reg. number:An (xxx).L 111 001

(An) 010 reg. number:An #<data> 111 100

(An) + 011 reg. number:An

– (An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

MC68020, MC68030, and MC68040 only

(bd,An,Xn)* 110 reg. number:An (bd,PC,Xn)* 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

Integer Instructions

4-168 M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

RTR Return and Restore Condition Codes RTR
(M68000 Family)

Operation: (SP) → CCR; SP + 2 → SP; (SP) → PC; SP + 4 → SP

Assembler
Syntax: RTR

Attributes: Unsized

Description: Pulls the condition code and program counter values from the stack. The
previous condition code and program counter values are lost. The supervisor portion
of the status register is unaffected.

Condition Codes:

Set to the condition codes from the stack.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 1 1

Integer Instructions

MOTOROLA M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL 4-169

RTS Return from Subroutine RTS
(M68000 Family)

Operation: (SP) → PC; SP + 4 → SP

Assembler
Syntax: RTS

Attributes: Unsized

Description: Pulls the program counter value from the stack. The previous program counter
value is lost.

Condition Codes:

Not affected.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1

Processor Instruction Summary

A-12 MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL MOTOROLA

A.1 MC68000, MC68008, MC68010 PROCESSORS
The following paragraphs provide information on the MC68000, MC68008, and MC68010
instruction set and addressing modes.

A.1.1 M68000, MC68008, and MC68010 Instruction Set
Table A-3 lists the instructions used with the MC68000 and MC68008 processors, and Table
A-4 lists the instructions used with MC68010.

Table A-3. MC68000 and MC68008 Instruction Set

Mnemonic Description
ABCD Add Decimal with Extend
ADD Add
ADDA Add Address
ADDI Add Immediate
ADDQ Add Quick
ADDX Add with Extend
AND Logical AND
ANDI Logical AND Immediate
ANDI to CCR AND Immediate to Condition Code Register
ANDI to SR AND Immediate to Status Register
ASL, ASR Arithmetic Shift Left and Right
Bcc Branch Conditionally
BCHG Test Bit and Change
BCLR Test Bit and Clear
BRA Branch
BSET Test Bit and Set
BSR Branch to Subroutine
BTST Test Bit
CHK Check Register Against Bound
CLR Clear
CMP Compare
CMPA Compare Address
CMPI Compare Immediate
CMPM Compare Memory to Memory
DBcc Test Condition, Decrement, and Branch
DIVS Signed Divide
DIVU Unsigned Divide
EOR Logical Exclusive-OR
EORI Logical Exclusive-OR Immediate
EORI to CCR Exclusive-OR Immediate to Condition Code Register
EORI to SR Exclusive-OR Immediate to Status Register
EXG Exchange Registers
EXT Sign Extend
ILLEGAL Take Illegal Instruction Trap
JMP Jump
JSR Jump to Subroutine

Processor Instruction Summary

MOTOROLA MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL A-13

Table A-3. MC68000 and MC68008 Instruction Set
(Continued)

Mnemonic Description
LEA Load Effective Address
LINK Link and Allocate
LSL, LSR Logical Shift Left and Right
MOVE Move
MOVEA Move Address
MOVE to CCR Move to Condition Code Register
MOVE from SR Move from Status Register
MOVE to SR Move to Status Register
MOVE USP Move User Stack Pointer
MOVEM Move Multiple Registers
MOVEP Move Peripheral
MOVEQ Move Quick
MULS Signed Multiply
MULU Unsigned Multiply
NBCD Negate Decimal with Extend
NEG Negate
NEGX Negate with Extend
NOP No Operation
NOT Logical Complement
OR Logical Inclusive-OR
ORI Logical Inclusive-OR Immediate
ORI to CCR Inclusive-OR Immediate to Condition Code Register
ORI to SR Inclusive-OR Immediate to Status Register
PEA Push Effective Address
RESET Reset External Devices
ROL, ROR Rotate Left and Right
ROXL, ROXR Rotate with Extend Left and Right
RTE Return from Exception
RTR Return and Restore
RTS Return from Subroutine
SBCD Subtract Decimal with Extend
Scc Set Conditionally
STOP Stop
SUB Subtract
SUBA Subtract Address
SUBI Subtract Immediate
SUBQ Subtract Quick
SUBX Subtract with Extend
SWAP Swap Register Words
TAS Test Operand and Set
TRAP Trap
TRAPV Trap on Overflow
TST Test Operand
UNLK Unlink

S-Record Output Format

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

C-5

Table C-2. ASCII Code

Least
Significant

Digit

Most Significant Digit

0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 “ 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS – = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

S-Record Output Format

MOTOROLA

MC68000 FAMILY PROGRAMMER’S REFERENCE MANUAL

C-5

Table C-2. ASCII Code

Least
Significant

Digit

Most Significant Digit

0 1 2 3 4 5 6 7

0 NUL DLE SP 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 “ 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS – = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

