
Conversion rules of C

Safe conversions in C

Safe conversion:

A safe conversion from one data type to another data type is a conversion that does not cause an

overflow

(I.e., you will get a representation for the same value)

The following conversions are safe in C:

Important Note:

In C, safety has nothing to do with permission !!!

This will be explained in the automatic conversion rule next....

Automatic conversion rules in C

Automatic conversion rules of C:

A binary operation using values of 2 different types:

C will automatically perform a safe conversion for the value of the less capable

data type to a value of the higher capable data type

Example:

  int a;    

  float b;

  a + b   

                 1. first convert A to float

 2. then perform A + B as float + float   

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/1-C-intro/...

1 of 4 6/23/17, 12:38 PM



 (Just like Java)               

An assignment operation using values of 2 different types:

C will automatically perform a conversion for the value of the LHS data type to a

value of the RHS data type

Even if the conversion will cause precision loss (i.e., unsafe) !!!

Example:

  int   a;

  float b  

  a = b;   

                 1. first convert b to int !!!

 2. then store the value in variable a  

 (DIFFERENT from Java !!!)               

Note: this is forbidden in Java !!! (Need a casting operator)

Warning:

In C, you can perform unsafe assignment operations that Java will not allow without using a

casting operation

Rationale:

C is designed for system programming; and system programmers are mature

programmers who should know the danger of all features of the programming

language.

Furthermore, preventive features in programming languages can prevent

programmers from performing certain tasks.

A systems programming language is intended to give the

programmer to complete control of the computer (no restrictions)

Compiler checks for type conflicts often limit the programmers' ability to perform

some tasks.

Hence, these checks are omitted.

Conclusion:

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/1-C-intro/...

2 of 4 6/23/17, 12:38 PM



C is less strongly typed than Java

(In other words: grow up !!!)

Example:

   #include <stdio.h>

   int main(int argc, char* argv[] )

   {

      int i;

      short s;

      i = 9827563;

      s = i;       /* Unsafe conversion, allowed in C !!! */      

      printf( "i = %d , s = %d \n", i, s );

   }

Output:

    i = 9827563 , s = -2837   (lost of accuracy !)      

Example Program: (Demo above code)                                                 

Prog file: click here

How to run the program:

Right click on link and save in a scratch directory

To compile:   gcc casting1.c

To run:          ./a.out

Postlude

Fact:

C will warn you about some conversion between different data types

When the data types are too far apart (i.e., completely unrelated, C will give a

warning

Example:

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/1-C-intro/...

3 of 4 6/23/17, 12:38 PM



    int main(int argc, char* argv[] )

    {

int i = 0;  // Integer

       // i is a number that you can add, subtract, etc

int a[5];   // Array of integers

       // a is the LOCATION (address) of the first elem of the array

     

     

 i = a; // WARNING !! Too different !!!

     

       printf("i = %d\n", i);

     

    }

Compiler message:

casting2.c: In function 'main':

casting2.c:11: warning: assignment makes integer from pointer without a cast  

Example Program: (Demo above code)                                                 

Prog file: click here

How to run the program:

Right click on link and save in a scratch directory

To compile:   gcc casting2.c

To run:          a.out

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/1-C-intro/...

4 of 4 6/23/17, 12:38 PM


