
Using recursion to insert node at the tail of a list

Pay attention to this when you study recursion

The key to understanding recursion is:

Figure out how to solve the original problem using the solution of a smaller version of the problem

After you have figure out the key problem above, you can then:

Find the base case(s) (easy to solve problems)

Find out how to detect the base case(s)

The recursive method must use an if-statement to detect each base case and return the solution !!!

Insert a node at the tail of a list using recursion

How to solve the problem of

Insert a node at the end of a linked list

using the solution of a smaller version of the problem

Example:

I want to change this state

into the following state (i.e., what the list would look like after the node e has been inserted)

http://www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/12-Recurs...

1 of 8 6/23/17, 12:34 PM

by using the solution of a smaller version of the same problem

Here is a smaller version of the same problem:

(Notice the list is smaller because the first node is missing

Here is the solution for the smaller problem:

How I obtain the solution of original problem:

http://www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/12-Recurs...

2 of 8 6/23/17, 12:34 PM

let me draw it differently and highlight the smaller solution:

using the solution for the smaller problem:

Answer: with this statement

 head.next = smallerSol;

This is the basis for the recusive algorithm !!!

Pseudo code for the recursive algorithm to insert a node e at the tail of a list starting at head:

 Node insert(Node head, Node e)

 {

 /* ===

 Recursive algorithm WITHOUT

 handling of the base case(s)

http://www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/12-Recurs...

3 of 8 6/23/17, 12:34 PM

 === */

 Node smallerSol;

 // Suppose head and e are as follows:

smallerSol = insert(head.next, e);

 // insert(head.next, e) is this smaller problem:

 // smallerSol will contains this list:

 // Solve the original problem:

head.next = smallerSol;

http://www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/12-Recurs...

4 of 8 6/23/17, 12:34 PM

 // Now we have:

solution = head; // The solution is the list starting at head

 // Return the solution list

return(solution);

 }

The other important part of recursion: the base case(s)

Fact:

To complete the recursive algorithm, we must find easy to solve cases (base cases) and handle the base cases

separately

Otherwise, the recursive method will not terminate --- it will keep calling itself forever

Hint:

Base cases are usually problems where the input data is small in size

Characteristic of base cases:

Every base case has the property that you can solve the problem using a few simple statements

Base cases for list problems are often:

When the input list is empty, and/or

When the input list contains one node

The base case for "insert node at the tail of a list"

Question:

When is it extremely easy to insert a node at the tail of a list ???

Answer:

http://www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/12-Recurs...

5 of 8 6/23/17, 12:34 PM

When the list has no nodes !!!

Example:

Base case:

How do you detect the base case ?

Answer:

 if (head == null)

Solution:

Java code to detect and handle the base case in "insert node at the tail of a list":

 if (head == null)

 {

 e.next = null;

 solution = e;

 return solution;

 }

The complete recursive algorithm...

The complete recursive algorithm in general is as follows:

static SolveProblem(n)

 {

 variables: solution, smallerSol;

 if (base case detected)

 {

 solution = solve base case;

http://www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/12-Recurs...

6 of 8 6/23/17, 12:34 PM

 return solution;

 }

 else

 {

 smallerSol = SolveProb(n-1); // Recursion !!!

 solution = find solution using smallerSol;

 return solution;

 }

 }

Note:

Recursive methods are almost always a class method (i.e.: static)

The recursive insert node at tail of list algorithm

Put the code that we have develop above into the general recursive algorithm form and we obtain:

 private static Node insert(Node head, Node e)

 {

 Node solution, smallerSol;

 /* --

 Base case: insert at the tail of an empty

 -- */

 if (head == null)

 {

 e.next = null; // Mark e as the last node

 solution = e; //

 return(solution); // return the simple solution !

 }

 else

 {

 /* ===

 Solve the problem USING the solution of a smaller problem

 I know the list is not empty...

 And "head.next" is a SHORTER list !

 === */

 smallerSol = insert(head.next, e); // Have "someone else" solve

 // in smaller problem

 head.next = smallerSol; // Find solution using smallerSol

solution = head;

 return solution; // Return the solution

 }

 }

How to use this method:

 public static void main(String[] args)

 {

 Node head = null;

 Node e;

 e = new Node(4);

head = RecursiveList.insert(head, e); // Pass head and e as parameter

 // Method returns a new list

 RecursiveList.printList(head);

 e = new Node(1);

 head = RecursiveList.insert(head, e);

 RecursiveList.printList(head);

http://www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/12-Recurs...

7 of 8 6/23/17, 12:34 PM

 e = new Node(3);

 head = RecursiveList.insert(head, e);

 RecursiveList.printList(head);

 e = new Node(7);

 head = RecursiveList.insert(head, e);

 RecursiveList.printList(head);

 }

Output:

 [4.0]

 [4.0 , 1.0]

 [4.0 , 1.0 , 3.0]

 [4.0 , 1.0 , 3.0 , 7.0]

Example Program: (Demo above code)

The Recursive List Prog file: click here

The test Prog file: click here

How to run the program:

Right click on link(s) and save in a scratch directory

To compile: javac testProg.java

To run: java testProg

http://www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/12-Recurs...

8 of 8 6/23/17, 12:34 PM

