
Tower of Hanoi

Introduction:

Hands on "Tower of Hanoi": click here or click here

Again, I want to show you more than just implementing the recursive solution for Hanoi in assembler.

Here is my CS170 webpage that explain the important of pre-conditioning in the Tower of Hanoi

problem: click here

The TowerOfHanoi function

The TowerOfHanoi function can be written explicitly as follows:

 void hanoi(int ndisks, int fromPeg, int toPeg)

 {

 int helpPeg;

 if (ndisks == 1) then

 WriteLn "move disk from peg " + fromPeg + " to " + " + toPeg

 else

 {

 helpPeg := 6 - fromPeg - toPeg;

 hanoi(ndisks-1, fromPeg, helpPeg);

 WriteLn "move disk from peg " + fromPeg + " to " + " + toPeg

 hanoi(ndisks-1, helpPeg, toPeg);

 }

 }

The hanoi function is called with the following statement:

 hanoi(n, 1, 3);

to move n disks from peg 1 to peg 3.

The stack frame structure for the hanoi function

The stack frame structure created will looks as follows:

 +---------------------+ <------------ Stack pointer (A7)

 | use for helpPeg |

 +---------------------+ <------------ Frame Pointer (A6)

 | Saved Frame Pointer |

 +---------------------+

 | Return Address |

 +---------------------+

 | use for ndisks |

 +---------------------+

 | use for fromPeg |

 +---------------------+

 | use for toPeg |

 +---------------------+

 | |

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

1 of 7 6/23/17, 12:31 PM

 | rest of the stack |

 | |

The hanoi program:

The complete example can be found in the following assembler program file: click here

You may want to get the following Debug file for EGTAPI to use with it: click here

I will highlight certain steps in the program in the remainder of the webpage....

Passing parameters from main program to hanoi

The main program passes the parameter n to hanoi by pushing N, 1, and 3 in the reverse order onto the

system stack with the following instructions:

 move.l #3,-(a7) ; Push toPeg

 move.l #1,-(a7) ; Push fromPeg

 move.l N,-(a7) ; Push ndisks

This will create the following stack structure:

 +---------------------+ <------------ Stack pointer (A7)

 | parameter N |

 +---------------------+

 | parameter 1 |

 +---------------------+

 | parameter 3 |

 +---------------------+

 | |

 | rest of the stack |

 | |

How the main program calls the hanoi function

The main program calls the hanoi function with a bsr instruction:

 pass parameters (see above)

bsr hanoi

This will create the following stack structure:

 +---------------------+ <------------ Stack pointer (A7)

 | return address |

 +---------------------+

 | parameter N |

 +---------------------+

 | parameter 1 |

 +---------------------+

 | parameter 3 |

 +---------------------+

 | |

 | rest of the stack |

 | |

Prelude of the hanoi function:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

2 of 7 6/23/17, 12:31 PM

The prelude of the hanoi function consists of these 3 instructions:

********************************* PRELUDE

 move.l a6, -(a7) ; Save caller's frame pointer

 move.l a7, a6 ; Setup my own frame pointer

 suba.l #4, a7 ; Allocate space for the local valiable 'helpPeg'

I will explain what each one does below. Make sure that you realise that the structure of the stack frame

is like this when the prelude is always executed:

 +---------------------+ <------------ Stack pointer (A7)

 | return address |

 +---------------------+

 | parameter N |

 +---------------------+

 | parameter 1 |

 +---------------------+

 | parameter 3 |

 +---------------------+

 | |

 | rest of the stack |

 | |

move.l a6, -(a7)

This will save the frame pointer on the stack, creating this partial stack frame structure:

 +---------------------+ <------------ Stack pointer (A7)

 | saved a6 |

 +---------------------+

 | return address |

 +---------------------+

 | parameter N |

 +---------------------+

 | parameter 1 |

 +---------------------+

 | parameter 3 |

 +---------------------+

 | |

 | rest of the stack |

 | |

move.l a7, a6

This will make the frame pointer A6 points to the stack frame that is now being built:

 +---------------------+ <---- Frame pointer A6 & Stack pointer (A7)

 | saved a6 | point to the same location....

 +---------------------+

 | return address |

 +---------------------+

 | parameter N |

 +---------------------+

 | parameter 1 |

 +---------------------+

 | parameter 3 |

 +---------------------+

 | |

 | rest of the stack |

 | |

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

3 of 7 6/23/17, 12:31 PM

suba.l #4, a7

This will push the stack pointer A7 8 bytes up, allocating 1 integer variable. This variable will be

used is for helpPeg.

 +---------------------+ <---- Stack pointer (A7)

 | helpPeg |

 +---------------------+ <---- Frame pointer (A6)

 | saved a6 |

 +---------------------+

 | return address |

 +---------------------+

 | parameter N |

 +---------------------+

 | parameter 1 |

 +---------------------+

 | parameter 3 |

 +---------------------+

 | |

 | rest of the stack |

 | |

When the prelude is finish, the stack frame is complete and the actual function can begin.

How to access the parameter and the local variables in Hanoi:

From the stack strcuture:

 +---------------------+ <---- Stack pointer (A7)

 -4(a6) | helpPeg |

 +---------------------+ <---- Frame pointer (A6)

 0(a6) | saved a6 |

 +---------------------+

 | return address |

 +---------------------+

 8(a6) | param NDisks |

 +---------------------+

 12(a6) | param fromPeg |

 +---------------------+

 16(a6) | param toPeg |

 +---------------------+

 | |

 | rest of the stack |

 | |

Parameter ndisks is located 8 bytes below starting from the address contained in the frame pointer

A6.

So the address mode that will let you get to this variable is 8(A6)

Parameter fromPeg is located 12 bytes below starting from the address contained in the frame

pointer A6.

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

4 of 7 6/23/17, 12:31 PM

So the address mode that will let you get to this variable is 12(A6)

Parameter toPeg is located 16 bytes below starting from the address contained in the frame

pointer A6.

So the address mode that will let you get to this variable is 16(A6)

Local variable helpPeg is located 4 bytes above starting from the address contained in the frame

pointer A6.

So the address mode that will let you get to this variable is -4(A6)

Use the above way to gain access to the private copy of parameters and local variables of each

function invocation....

How Hanoi calls itself:

It is no different from how the main program calls the Hanoi function. Simply push the parameter in the

proper order on the stack, and call Hanoi.

But make sure you pop the parameter from the stack after Hanoi returns - because the parameter has

not been cleaned up.

The following is the program fragment where Hanoi calls hanoi(ndisks-1, fromPeg, thirdPeg):

 move.l -4(a6), -(a7) ; Push and pass toPeg

 move.l 12(a6), -(a7) ; Push and pass fromPeg

 move.l 8(a6), d0 ; d0 = ndisks

 sub.l #1, d0 ; d0 = ndisks-1

 move.l d0, -(a7) ; Push and pass ndisks-1

 bsr hanoi ;

 adda.l #12,a7 ; Pop parameters (3 ints) off stack

Hanoi will call itself a second time with hanoi(ndisks-1, thirdPeg, toPeg); The following is the program

fragment where Hanoi calls hanoi(ndisks-1, thirdPeg, toPeg):

 move.l 16(a6), -(a7) ; Push and pass toPeg

 move.l -4(a6), -(a7) ; Push and pass thirdPeg

 move.l 8(a6), d0 ; Get ndisks

 sub.l #1, d0 ; d0 = ndisks-1

 move.l d0, -(a7) ; Push and pass ndisks-1

 bsr hanoi ;

 adda.l #12,a7 ; Pop parameters (3 int) off stack

Help Subroutine: WriteLn

In the Hanoi subroutine, we need to print out a string, e.g.:

WriteLn "move disk from peg " + fromPeg + " to " + " + toPeg

I have provided a number of helpful subroutines in a library that is linked into the assembler

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

5 of 7 6/23/17, 12:31 PM

program compiled with the command as255.

One of these helpful subroutine is WriteLn that prints a string stored in memory (where else ?) to

an output file.

How to use a library subroutine (like WriteLn) in assembler:

You must define the subroutine name as "external" using the "xref" assembler directive:

 xref WriteLn

It tells the assembler that the name "WriteLn" will be supplied by another source file (the

library file linked with the program)

1.

Use jsr WriteLn when you call a library subroutine.

JSR is similar to BSR, except it jumps farther away. (BSR is limited to a location that is <

32 Kbytes from the current program location)

2.

Beside this, you need to know WHAT parameters TO PASS to WriteLn and WHAT IT

RETURNS. The parameters to WriteLn are:

A0 = starting address of the string in memory

D0 = the length of the string (number of bytes)

WriteLn does not return any value

Sample program:

* Demo the use of WriteLn

*

 xdef Start, Stop, End

xref WriteLn

*

Start:

* ; Print the text message

 move.l #Text, a0 ; Location of text

 move.l #(EndText-Text),d0 ; Length of text

jsr WriteLn

Stop:

 nop

Text: dc.b 'Hello World !'

EndText: dc.b ' '

End:

 end

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

6 of 7 6/23/17, 12:31 PM

Example Program: (Demo above code)

Prog file: click here

How to run the program:

Right click on link and save in a scratch directory

To compile: as255 WriteLn

To run: use m68000

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

7 of 7 6/23/17, 12:31 PM

