CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

First Recursive Function: Factorial

e Example: Factorial
o The factorial function can be written explicitly as follows:

int fac(int n)

{

if (n == 0)
return(l) ; <--- easy case
else
{
return(m * fac(n-1)); <--- Return the solution for fac(n)

}

o The factorial function is called with a statement that is similar to the following:
int n, result;

result = fac(n);

e The stack frame structure for the factorial function

o The stack frame structure that you need to created depends on the number of parameter variables and the
number of local variables used in the function.

© In the above example:

m the factial function has 1 parameter variable and
= (local variables.

o The stack frame structure created will looks as follows:

tmmm e + <-—-----———— Frame Pointer (A6) and Stack pointer (A7)

We do not need to be concerned with the "rest of the stack" (i.e., the part of the stack used by other functions)
because this function has no business with any of the information stored in that area of the stack !

(In fact, if you do mess with the data stored in the "rest of the stack area", you will have an extraordinary painful

1of5 6/23/17,12:30 PM

CS255 Syllabus

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

experience with programming recursive function in assembler as you try to debug your recursive function.

So recursion resembles a cat - curiosity will kill it...)

e The factorial program

o Factorial in assembler:

2 of 5

* main: result = fac(4)

Start: move.l n, -(a7)
bsr fac ; fac(4)

adda.l #4,a7 ; pop useless parameter from stack
move.l dO, result ; Put 4! in result

Stop: nop

*

*

* int fac(int n)

* {

* if (n == 0)

* return(1l) ;

* else

* {

* return (n * fac(n-1));

* }

* }

* Input: n on stack

* Output: n! in register dO

*

*

fac:

khkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx*x PRELUDE
move.l a6, -(a7) ; Save caller's frame pointer
move.l a7, a6 ; Setup my own frame pointer

suba.l #0, a7 ; No local variables (you can omit this instruction)
khkkhkkkhkkkhkkkhkkkhkkhkhkkkhkkkhkkkhkkkkkk

L e e e ; Testing n ==
move.l 8(a6), dO ;
cmp.1 #0, dO ; n==0 2??
bne Else ;
K ; Then....
move.l #1, dO ; then part: return 1 in DO

khkkkkkkkkkkkkkkkkkkkkkkkkkkkkxkkx*x* POSTLUDE

move.l a6, a7 ; Deallocate local variables
move.l (a7)+, a6 ; restore caller's frame pointer
khkkkkkhkkkk
rts
H e ; Else
Else
move.l 8(a6), dO ;
sub.l #1, dO ; DO =n -1
*
I e L e ; fac(n) is calling fac(n-1) now !!!!
*

move.l dO, -(a7) ; Push (n-1) as parameter

6/23/17,12:30 PM

CS255 Syllabus

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk*k*x*x POSTLUDE
move.l a6, a7 ; Deallocate local variables

khkkkkkhkkhkhkhkhkkhkkkhkkkhkkhkhkhkhkkhkkkhkkxk

rts

; Now we are ready to exit...

bsr fac ; Call fac(n-1)
adda.l #4,a7 ; Clean up parameter from stack
* ; Note: dO contains the result of fac(n-1) !'!!
move.l 8(a6), dl ; dl =n
muls dl, do ; d0 = n*fac(n-1)

Watch the stack

move.l (a7)+, a6 ; restore caller's frame pointer

o The complete example can be found in the following assembler program file:

© You may want to get the following Debug file for EGTAPI to use with it:

o [will highlight certain steps in the program in the remainder of the webpage....

¢ Passing parameter n from main program to fac

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

The main program passes the parameter n to factorial by pushing n onto the system stack with the following instruction:

move.l n, —(a7)

This will create the following stack structure:

Fomm + < Stack pointer (A7)

\
....... \
e Main program calling fac function
The main program calls the factorial function with a bsr instruction:

bsr fac

This will create the following stack structure:

fomm + < Stack pointer (A7)
| return address |
Fom +
| parameter n |
Fom +

[e \
| rest of the stack |
\ \

o Prelude of the Factorial function:

The prelude of the factorial function consists of the 3 instructions:

R R R b I b I b I b b b b b b b b b b b b b S b b b S b S b 3 PRELUDE

move.l a6, -(a7) ; Save caller's frame pointer
move.l a7, a6 ; Setup my own frame pointer
suba.l #0, a7 ; No local variables

R R b b I b I b I b b b b b b b b b b b b b S b b b S b S b 3

I will explain what each one does below. Make sure that you realise that the structure of the stack frame is like this when

3 of 5

6/23/17,12:30 PM

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

the prelude is always executed:

fomm + < Stack pointer (A7)
| return address |
Fom +
| parameter n |
Fom +

[e
| rest of the stack |
\ \

o move.l a6, -(a7)

This will save the frame pointer on the stack, creating this partial stack frame structure:

fomm + < Stack pointer (A7)
| saved a6

o +

| return address |

o +

| parameter n |

o +

[e \
| rest of the stack |
\ \

© move.l a7, a6

This will make the frame pointer A6 points to the stack frame that is now being built:

Fomm + <---- Frame pointer A6 & Stack pointer (A7)
| saved a6 | point to the same location....

Fom +

| return address |

Fom +

| parameter n |

Fom +

o suba.l #0, a7

This instruction does nothing to the stack pointer A7... (we could omit it)

fomm + <---- Frame pointer A6 & Stack pointer (A7)
| saved a6 | point to the same location....

Fom +

| return address |

Fom +

| parameter n |

Fom +

[e \
| rest of the stack |
\ \

o When the prelude is finish, the stack frame is complete and the actual function can begin.

e How to access the parameter in fac:

o Parameter n is located 8 bytes below starting from the address contained in the frame pointer A6.
So the address mode that will let you get to this variable is 8(A6)

e How factorial calls itself:

It is no different from how the main program calls the factorial function. Simply push the parameter on the stack, and call

factorial.

4 of 5 6/23/17,12:30 PM

CS255 Syllabus

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

But make sure you pop the parameter n from the stack after factorial returns - because the parameter has not been

cleaned up.

The following is the program fragment where factorial calls fac(n-1):

move.l 8(a6), dO
sub.l #1, dO

move.l d0, -(a7)
bsr fac
adda.l #4,a7

retrieve parameter n into register dO
; d0 = n -1

; fac is calling fac now !!!!

Push (n-1) as parameter

; Call fac(n-1)
; Clean up parameter from stack

; NOTE: return value of fac(n-1) in register DO

50f5

6/23/17,12:30 PM

