
Modern programming languages

Moderm programming languages

Fact:

All modern programming languages supports recursion

Detecting recursion

Fact:

It is very hard to detect if a function is recursive due to the indirect recursion

phenomenon

Indirect recusion:

 void A(...)
 {

 B(...);

 }

 void C(...)
 {

 D(...);

 }

 void D(...)
 {

A(...);

 }

The call chain can be arbitrary deep !!!

Compilers of modern languages

Fact:

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

1 of 5 6/23/17, 12:29 PM

The compiler of modern programming language will not try to detect if some

function/method is recursive of not

The compiler of modern programming language will assume the worst case

scenario:

It will provide support for recursion for every function that it

compiles.....

Recursion and storing local variable in memory variables

The technique to use memory variables created with ds to store local variables will only work

for non-recursive of subroutine call:

 main()
 {
 int a, b, c;

 c = sum(a, b);
 }

 int sum(int x, int y)
 {
 x = x + 1;
 y = y + 1;

 return (x*x + y*y);
 }

Storing local variables in memory variable using ds will not easily with recursive calls:

 main()
 {
 c = func_1(a, b);
 }

 int func(int x, int y)
 {
 int k, l, m;

 m = func(k, l);
 }

Reason:

When the function func is called a second time, another copy of the local

variable must be created that will be used by the second function call !!!

The ds assembler directive can only create (= reserve space) for one copy of local

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

2 of 5 6/23/17, 12:29 PM

variable !!!

Using the system stack to pass parameters

It is natural to pass parameters using the stack because the way that the functions are activated

and de-activated:

 main ---------> func1 -----------> func2 ----------> func3

Stack:
 +------------+
 | ret. func2 |
 +------------+ +------------+
 | ret. func1 | | ret. func1 |

+------------+ +------------+ +------------+
| ret. main | | ret. main | | ret. main |
+------------+ +------------+ +------------+

The following figure shows how each function passes ONE parameter its own callee function

main pass one paremeter (func1 param) to func1

func1 pass one paremeter (func2 param) to func2

func2 pass one paremeter (func3 param) to func3

 main ------------> func1 --------------> func2 -------------> func3

 push func1 param push func2 param push fucn3 param
 bsr func1 bsr func2 bsr func3

Stack:
 +------------+
 | ret. func2 |
 +------------+
 | func3 param|
 +------------+ +------------+
 | ret. func1 | | ret. func1 |

 +------------+ +------------+
 | func2 param| | func2 param|
+------------+ +------------+ +------------+
| ret. main | | ret. main | | ret. main |
+------------+ +------------+ +------------+
| func1 param| | func1 param| | func1 param|
+------------+ +------------+ +------------+

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

3 of 5 6/23/17, 12:29 PM

How to pass a value on the stack

Recall that the M68000 system stack is implemented using the address register a7

Suppose the system stack is initially as follows

 +-------------+
 4004 | |
 +-------------+
 4008 | |
 +-------------+ <---- a7 = 4012
 4012 | aaaaaaaa |
 +-------------+
 4016 | bbbbbbbb |
 +-------------+
 | | (each rectangle represents 4 bytes)

After you push an integer value (say 6789) on the stack, the stack will look like this:

 +-------------+
 4004 | |
 +-------------+ <---- a7 = 4008
 4008 | 6789 |
 +-------------+
 4012 | aaaaaaaa |
 +-------------+
 4016 | bbbbbbbb |
 +-------------+
 | | (each rectangle represents 4 bytes)

You can achieve this result using the following 2 instruction:

 suba.l #4, a7
 move.l #6789, (a7)

Because pushing values on the system stack is a frequently used operation, M68000 has provided

a special addressing mode to perform the push operation:

move.l <ea>, -(a7) is same as: suba.l #4, a7

 move.l <ea>, (a7)

move.w <ea>, -(a7) is same as: suba.l #2, a7
 move.w <ea>, (a7)

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

4 of 5 6/23/17, 12:29 PM

So when you push a long (4 bytes), the stack pointer a7 is decremented by 4.

But when you push a word (2 bytes), the stack pointer a7 is decremented by 2 !!!

This address mode is called "indirect with pre-increment"

Order of discussion

The topic of passing parameter and storing local variables using the system stack is pretty

complex

Therefore, I will discuss the topic in a piece meal fashion:

(I.e., I try to break down this complex topic into a number of simpler topics --- hope this will

help you understand the complex topic)

I will first show you how to pass parameters and store local variables using the

system stack

And access the variable using the stack pointer

1.

Finally I will show you how to pass parameters and store local variables using

the system stack

And access the variable using the frame pointer

2.

The 2nd method is the goal of this piece meal treatment of this complex topic:

Do not use the technique explained in step 1 !!!

The goal of the course is to teach you the technqiue in step 2 !!!

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

5 of 5 6/23/17, 12:29 PM

