1of5

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

Behavior of parameter variables and local variables

¢ Pre-requisite: from cs170/cs171

o Lifetime of Parameter variable:

® A parameter variable is created (i.e., reserve memory space for the paramter variable) at the

beginning of the execution of the method invocation (call)

= A parameter variable is destroyed (i.e., reserved memory space for the paramter variable is
unreserved (freed)) at the end (termination) of the execution of the method invocation (call)

Example:

void f (int a)
{ <--- variable a exists because f(a) has created a

..... location where variable a exists
} <--- variable a is "destroyed"

void main (String[] args)

{

f(a); <---- variable a is created and then f() is invoked

o Lifetime of Local variable:

= A local variable is created (i.c., reserve memory space for the local variable) at the place of

definition of the local variable

m A local variable is destroyed (i.e., reserved memory space for the local variable is unreserved

(freed)) at the end (termination) of the execution of the method invocation (call)

Example:

int x; // variable x begins to exist
x=1;
int y; // variable y begins to exist
y = 2;
} <-==-- variables x and y are destroyed

© Note:

6/23/17,12:29 PM

2 of 5

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

m The lifetime of a parameter variable is identical to a local variable that is defined at the beginning

(start) of a method

= Difference:

= parameter variables are initialized by the caller method

m Local variables cannot be initialized by the caller method

¢ Further pre-requisite from cs170/171

o Important fact:

» Parameter variables and local variables are private to each method invocation

m In other words:

= Every time a method is invoked (called), a new set of parameter variables and local

variables are created (reserve memory)

o Example:

public class Behavior

{

public static int count = 0;

public static void f(int a)

{
int b; // Local variable

b =a + 100;

if (a==0)
return;
else
f(a-1);

System.out.println(" a =" + a + " b=" 4+ Db);
}

public static void main(String[] args)

{

Output:

£(3);
}
}
a=1 b = 101
a =2 b = 102
a=3 b = 103

How is the program executed:

6/23/17,12:29 PM

3 of 5

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

main: +--> f(a = 3) +--> f(a = 2) +--> f(a = 1) +--> f(a = 0)
/ / / / |
£(3) - b =100 + 3 / b =100 + 2 / b =100 + 1 / | (return)
/ / / |
f(a-1) ---- f(a-1) ---- f(a-1) ---- |
|
print(a,b) (1, 101) <--+
|
print(a,b) (2, 102) <--+
|
print(a,b) (3, 103) <--+
|
<mmmm e +
A A A
| | |
Parameter var: a=3 a=2 a=1
Local variable: b = 103 b = 102 b = 101

o Example Program: (Demo above code)

m Prog file: click here

Example

o Non-recursive methods

o Non-recursive method:

= A non-recursive method is a method that will not be invoked if it is currently activel

Example:

}

{

void £(...

£(...

void main(....)

) ; // £ is invoked and becomes active

During the entire time that f() is ACTIVE
the method f£() will not be invoked again !

© Local (and parameters if you are careful) variables for non-recursive methods:

m Local variables for non-recursive method can be reserved using the DS directive

(The location of the local variables is usually after the rts instruction for the method)

6/23/17,12:29 PM

4 of 5

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

m This is possible because only one invocation will be active

The variables defined by the DS directive is adequate

® Recursive methods

o Recursive method:

® A recursive method is a method that will be invoked when it is already currently activel

Example:

public class Behavior

{

public static int count = 0;

public static void f(int a)

{
int b; // Local variable

b =a + 100;

if (a==10)
return;
else
f(a-1);
System.out.println(" a =" + a + " b=" 4+ Db);
}

public static void main(String[] args)
{

£(3);
}

Notice that £ () was invoked while £ () is active:

/ / /
£(3) - b = 100 + 3 / b =100 + 2 /
/ /

f(a-1) ---- f(a-1) ----

|
print(a,b) (3, 103) <--+

main: +--> f(a = 3) +--> f(a = 2) +--> f(a

|
|
|
f(a-1) ---- |
|
+

=1) +--> £(a
/
100 + 1 /
/

0)

(return)

print(a,b) (1, 101) <--

print(a,b) (2, 102) <--+

Parameter var: a
Local variable: b

nmn—= >
nmn—= >

103 b 102

nn—= >

101

6/23/17,12:29 PM

50f5

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

o Local variables and parameters variables for recursive methods:

= Local variables and parameter variables for recursive method cannot be reserved using the DS
directive

» This is impossible because there are more than one invocation will be active
Each invocation must uses a different set of local variables and parameter variables

The DS directive can only create (reserve space for) one set of variables

6/23/17,12:29 PM

