
Behavior of parameter variables and local variables

Pre-requisite: from cs170/cs171

Lifetime of Parameter variable:

A parameter variable is created (i.e., reserve memory space for the paramter variable) at the

beginning of the execution of the method invocation (call)

A parameter variable is destroyed (i.e., reserved memory space for the paramter variable is

unreserved (freed)) at the end (termination) of the execution of the method invocation (call)

Example:

 void f(int a)

 { <--- variable a exists because f(a) has created a

 location where variable a exists

 } <--- variable a is "destroyed"

 void main(String[] args)

 {

 f(a); <---- variable a is created and then f() is invoked

 }

Lifetime of Local variable:

A local variable is created (i.e., reserve memory space for the local variable) at the place of

definition of the local variable

A local variable is destroyed (i.e., reserved memory space for the local variable is unreserved

(freed)) at the end (termination) of the execution of the method invocation (call)

Example:

 void f(....)

 {

 int x; // variable x begins to exist

 x = 1;

 int y; // variable y begins to exist

 y = 2;

 } <----- variables x and y are destroyed

Note:

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

1 of 5 6/23/17, 12:29 PM

The lifetime of a parameter variable is identical to a local variable that is defined at the beginning

(start) of a method

Difference:

parameter variables are initialized by the caller method

Local variables cannot be initialized by the caller method

Further pre-requisite from cs170/171

Important fact:

Parameter variables and local variables are private to each method invocation

In other words:

Every time a method is invoked (called), a new set of parameter variables and local

variables are created (reserve memory)

Example:

 public class Behavior

 {

 public static int count = 0;

 public static void f(int a)

 {

 int b; // Local variable

 b = a + 100;

 if (a == 0)

 return;

 else

 f(a-1);

 System.out.println(" a = " + a + " b = " + b);

 }

 public static void main(String[] args)

 {

 f(3);

 }

 }

Output:

 a = 1 b = 101

 a = 2 b = 102

 a = 3 b = 103

How is the program executed:

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

2 of 5 6/23/17, 12:29 PM

 main: +--> f(a = 3) +--> f(a = 2) +--> f(a = 1) +--> f(a = 0)

 / / / / |

 f(3) - b = 100 + 3 / b = 100 + 2 / b = 100 + 1 / | (return)

 / / / |

 f(a-1) ---- f(a-1) ---- f(a-1) ---- |

 |

print(a,b) (1, 101) <--+

 |

print(a,b) (2, 102) <--+

 |

print(a,b) (3, 103) <--+

 |

 <---------------+

 ^ ^ ^

| | |

 Parameter var: a = 3 a = 2 a = 1

 Local variable: b = 103 b = 102 b = 101

Example Program: (Demo above code)

Prog file: click here

Non-recursive methods

Non-recursive method:

A non-recursive method is a method that will not be invoked if it is currently active

Example:

 void f(...)

 {

 }

 void main(....)

 {

 f(...); // f is invoked and becomes active

 During the entire time that f() is ACTIVE

 the method f() will not be invoked again !

 }

Local (and parameters if you are careful) variables for non-recursive methods:

Local variables for non-recursive method can be reserved using the DS directive

(The location of the local variables is usually after the rts instruction for the method)

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

3 of 5 6/23/17, 12:29 PM

This is possible because only one invocation will be active

The variables defined by the DS directive is adequate

Recursive methods

Recursive method:

A recursive method is a method that will be invoked when it is already currently active

Example:

 public class Behavior

 {

 public static int count = 0;

 /* ---------------------------------------

 A recursive method

 --------------------------------------- */

 public static void f(int a)

 {

 int b; // Local variable

 b = a + 100;

 if (a == 0)

 return;

 else

 f(a-1);

 System.out.println(" a = " + a + " b = " + b);

 }

 public static void main(String[] args)

 {

 f(3);

 }

 }

Notice that f() was invoked while f() is active:

 main: +--> f(a = 3) +--> f(a = 2) +--> f(a = 1) +--> f(a = 0)

 / / / / |

 f(3) - b = 100 + 3 / b = 100 + 2 / b = 100 + 1 / | (return)

 / / / |

 f(a-1) ---- f(a-1) ---- f(a-1) ---- |

 |

print(a,b) (1, 101) <--+

 |

print(a,b) (2, 102) <--+

 |

print(a,b) (3, 103) <--+

 |

 <---------------+

 ^ ^ ^

| | |

 Parameter var: a = 3 a = 2 a = 1

 Local variable: b = 103 b = 102 b = 101

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

4 of 5 6/23/17, 12:29 PM

Local variables and parameters variables for recursive methods:

Local variables and parameter variables for recursive method cannot be reserved using the DS

directive

This is impossible because there are more than one invocation will be active

Each invocation must uses a different set of local variables and parameter variables

The DS directive can only create (reserve space for) one set of variables

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

5 of 5 6/23/17, 12:29 PM

