
Intro to subroutine with local variables

What are local variables ?

Local variables:

Local variable = variables that are used (= accessed) only by the instructions in a specific

subroutine

I.e.:

Instructions in other subroutines do not use the local variable of a

subroutine

Fact:

Before instructions in a subroutine can use a local variable:

The local variable must be created !!!

I.e: memory space need to be reserved for the local variable !!!

Review of some CS170 material

This should have been taught in CS170/CS171, but I want to make sure that you know exactly what

happens when a function is invoked:

Each time a function/method is invoked (called):

the parameter variables and the local variables of the (called) function are

created

These variables (parameter and local) are then destroyed when:

the function exits/returns

Furthermore:

Active function:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

1 of 5 6/23/17, 12:28 PM

A function is active if:

The function has been called/invoked

The function has not yet returned/exited

A non-recursive function is active:

at most once

Therefore:

a non recursive function, then only one set (= copy) of its parameter and

local variable will exists at any time.

Local variable of non-recursive function

Fact:

Because a non-recursive function will never be called while it is active:

We only need 1 copy of the local variables of the non-recursive function

We can use the ds assembler directive to reserve memory space for the local variables of a

non-recursive function

Example: sum all elements in an array

 int SumArray(int a[], int n)

 {

 int i, s; // <-- local variables

 sum = 0;

 for (i = 0; i < n; i++)

 s = s + a[i];

 return(s);

 }

This function is called by main() as follows:

 main()

 {

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

2 of 5 6/23/17, 12:28 PM

 int A[10], sum;

 sum = SumArray(A, 10);

 }

I will keep thing simple and pass the parameters using registers:

First parameter is an array. You can't pass multiple integers. The only choice is to pass the

address of the array. Let's pick D0. (It's a smarter choice to pick A0 because an address is

pass).

Second parameter can be a constant. So you must pass by value. Let's pick D1.

And don't forget the return value location: let's pick D0.

Now we write the code in assembler with these agreements on parameters and return location.

First, this is the main program that invokes SumArray:

 main:

 move.l #A, d0 // Pass address of array

 move.l #10, d1 // Pass #elements

 bsr SumArray // Invoke SumArray

 move.l d0, sum // When SumArray return, update

 // total with return value

 A: ds.l 10 // The array

 sum: ds.l 1

Then we must decide where to put the local variables

Recall: for a non-recursive function, we can use:

Memory variables (defined using ds assembler primitive)

However:

The memory variable (defined using ds assembler primitive) must not

interfere with the execution of the program !!!

Solution:

Define the local variable after the RTS (return from subroutine instruction) of

the function !!!

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

3 of 5 6/23/17, 12:28 PM

Solution: Non-recursive function using memory local variables

 SumArray:

 MOVE.L #0, i ; i

 MOVE.L #0, s ; s

 WStart:

 MOVE.L i, d2 ;; Get i in D2

 CMP.L d1, d2 ; compares n (d1) and i (d2)

 BGE WEnd ; if (i >= n) exit while loop

 MOVE.L d0, a0 ; get base addr of array in a0

 MOVE.L i, d4 ; d4 = i

 MULS #4, d4 ; d4 = offset in array

 MOVE.L 0(a0, d4.w), d4 ; d4 = a[i]

 MOVE.L s, d3

 ADD.L d4, d3 ;

 MOVE.L d3, s ; s = s + a[i]

 MOVE.L i, d2 ; d2 = i

 ADD.L #1, d2 ; d2 = i + 1

 MOVE.L d2, i ; i = i + 1

 BRA WStart

 WEnd:

 MOVE.L d3, d0 ; return(s) [in agreed place d0]

 RTS

***** Function will not execute pass this point ****

 i: ds.l 1 ; reserve SPACE for local variable i

 s: ds.l 1 ; reserve SPACE for local variable s

NOTE:

A common error that students make is:

Not updating the memory variable

Example:

 MOVE.L i, d2 ; d2 = i

 ADD.L #1, d2 ; d2 = i + 1

They think that they have updated the local variable i

No they did NOT

They need to update the memory variable:

MOVE.L d2, i

Here is a runnable Emacsim assembler program of the program above: click here

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

4 of 5 6/23/17, 12:28 PM

Problems with storing local variables using the ds directive

Fact:

There is only one copy of the local variables defined using ds

We will see later (soon) that:

Recursion requires (need to use) one copy of local variables for each invocation of the

recursive subroutine

Therefore:

Local variables stored as memory variables using ds can not support recursive subroutines

We need a more advance way to store the local variables for a subroutine !!!

Before I can discuss this technqiue, I want to review the lifetime of local variables (and

parameter variables)

(I want to make sure you understand that local variables and parameter variables are

created and destroyed while a program is running....)

Historical note....

Fact:

The very first computer language was Fortran

Fortran did not support recursion !!!!

The very first Fortran compiler allocate local variables as memory variables --- just like the

example above !!!!

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

5 of 5 6/23/17, 12:28 PM

