
Subroutine call and return: bsr (jsr) and rts

Marked differences between methods in high level language and assembler

Methods (or subroutines) in high level languages have very nice syntax structures to highlight where

the method begins and ends...

Methods (or subroutines) in assembler are nothing more than a series of instructions with a label

Methods in high level languages have

Input parameters

Return values

In assembler programming, input parameters and return values are symbolic - they are agreements

on where the input value are stored.

As a result, in some examples, you will NOT see the names of the input parameters in the

assembler code !!!

Assembler Instructions to implement subroutine (method) calling

Modern computer provides 2 instructions that user can use to implement:

function (method) invocation (calling a method): BSR

returning from a function call: RTS

Syntax of the Branch to Subroutine (BSR) instruction:

 BSR label

Effect:

 (1) Push the Program Counter (PC) onto the system stack

(2) Branch to memory location marked by the label "label"

The operation "Push the Program Counter" onto the system stack has the effect of saving the

address of the instruction that follows the BSR instruction on the system stack !!!

This address is where the program must resume when the subroutine ends.

This retrurn address is a "bread crump" - using the analogy of Hansel and Gretel....

Example using the BSR instruction

Suppose the follwoing program segment is located in the following memory locations: (the address

of the locations is given in column 1 and the instructions are given in ASSEMBLER code rather

than BINARY code)

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

1 of 4 6/23/17, 12:27 PM

 Memory Instruction

 Address: in the memory address:

 --------- -----------------------

 2244: BSR label

 2246: MOVE.L #0, Dummy1

4012: label: MOVE.L #0, Dummy2

 4014: RTS

Important Fact:

at the moment that the CPU is executing the BSR instruction, the program counter would

have been incremented and points to the next instruction (which is at address 2246.

Therefore, PC is equal to 2246 (address of the NEXT instruction)

Supose at the moment that the CPU is executing the BSR instruction (i.e., before the BSR

instruction is executed), the stack stack point A& = 10000, so the stack looks like this:

 (PC = 2246) +---------------+

 (A7 = 10000) | |

+---------------+

| |

+---------------+

| |

+---------------+

 A7 --> 10000 | xxxxxxxx |

Then:

AFTER executing the "BSR label" instruction, the stack will be changed into:

PC = 4012 +---------------+

 A7 = 9996 | |

+---------------+

| |

+---------------+

 A7 --> 9996 | 2246 | <--- PC pushed on stack

+---------------+

 10000 | xxxxxxxx |

In addition:

the PC will contain the value of "label" - so the program made a JUMP to address "label" -

("label" marks the memory address 4012 !):

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

2 of 4 6/23/17, 12:27 PM

Returning from a subroutine call

The Return from Subroutine (RTS) instruction

 RTS

Effect:

 (1) Pop the top of the stack into the Program Counter (PC)

Example using the RTS instruction We continue with the example from above:

 Memory Instruction

 Address: in the memory address:

 --------- -----------------------

 2244: BSR label

 2246: MOVE.L #0, Dummy1

 4012: label: MOVE.L #0, Dummy2

 4014: RTS

 PC = 4012 +---------------+

 A7 = 9996 | |

+---------------+

| |

+---------------+

 A7 --> 9996 | 2246 |

+---------------+

 10000 | xxxxxxxx |

Suppose the CPU fetched "RTS" and executes it...

AFTER the CPU finishes executing "RTS", the stack will be changed to:

 PC = 2246 +---------------+

 A7 = 10000 | |

+---------------+

| |

+---------------+

 9996 | 2246 | <- NOT part of the stack !

+---------------+

 A7 -->10000 | xxxxxxxx |

NOTE: although the value 2246 is still in memory, it is NO LONGER part of the system stack -

because the stack top (indicated by A7) has moved below that memory location !!!!

Note that the value 2246 which was at the top of the stack is now in the PC !!!

In other words, the PC has been updated to 2246 (In computer science jargon: 2246 was POPPED

from the program stack into the PC.)

Note also that the value 2246 is the location AFTER the BSR instruction !!!

Becasue PC = 2246, the next instruction that the CPU will fetch and execute is the one after the BSR

instruction !!

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

3 of 4 6/23/17, 12:27 PM

That is exactly the location where you want to be when you return from the called function !!!!

"Format" of a method/function in assembler code

While functions/methods look very "formidable" in high level languages (such as Java),

functions/methods written in assembler does not look like much:

A function in assembler code looks something like this:

 FuncName:

 (assembler instructions that comprise

 the body of the function)

 RTS

Needless to say that this is a far-cry from the "nice-looking" (human readable) block structures in a

high level language.

Furthermore, functions/methods written in assembler are very hard to discern - especially if you

remember that there are many labels all over the place from IF and WHILE statements !!!

Example: BSR and RTS

Example Program: (Demo above code)

Prog file: click here

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

4 of 4 6/23/17, 12:27 PM

