
Implementing a Stack

A stack is a data structure with two operation:

void Push(int x): put the value "x" in the stack. The value "x" is put "at the top" of the stack.

int Pop(): remove the top value off the stack. The value removed is returned.

Example:

 (1) Initially: +----------+ (empty stack)

 (2) After Push(4): +----------+

 | 4 |

 +----------+

 (3) After Push(9): +----------+

 | 9 | (new value get put ON TOP)

 +----------+

 | 4 |

 +----------+

 (4) After Push(1): +----------+

 | 1 | (new value get put ON TOP again)

 +----------+

 | 9 |

 +----------+

 | 4 |

 +----------+

 Suppose we have 3 variables "a", "b" and "c" defined....

 (5) After a = Pop(): +----------+

 | 9 | (top value is REMOVED !)

 +----------+

 | 4 |

 +----------+

 and a = 1

 (6) After b = Pop(): +----------+

 | 4 | (top value is REMOVED again !)

 +----------+

 and b = 9

 (7) After c = Pop(): +----------+ (Stack is empty)

 and c = 4

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

1 of 8 6/23/17, 12:23 PM

Stack in a program versus the System Stack

The stack that you learned in Java is usually implemented using an array variable

Example: (CS171 material)

 public class Stack

 {

 int[] A;

 int stacktop; // Points to the top of the stack

 public Stack(int size)

 {

 A = new int[size]; // Create the array to hold values in stack

 stacktop = -1;

 }

 public void push(int x)

 {

 A[++stacktop] = x; // Move stack top and put x on the stack

 }

 public int pop()

 {

 return A[stacktop--];

 }

 }

When a program is running, the computer system will need to store various information items

(variables) in a stack

Therefore:

All modern computers maintain a program stack (a.k.a. System stack) to manage

information

Information stored in the system stack include:

function activation information (created when a function is called

(These function activation information will be removed (popped) when a function

returns (exits))

The reason we want to use a stack is the order the elements enter and leave the stack is exactly the same

order of function activation and deactivation.

The system stack is (always) stored inside the memory (memory stores everything :-))

When a program is running, the memory is organized as follows:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

2 of 8 6/23/17, 12:23 PM

Memory:

 0 +----------+

| | <--- this part contains the "code"

| A | This part of the memory is "write protected"

| | (can not - and should not - be modified)

| |

 +----------+

| | <--- this part contains "static variables"

| B | These variables exist at the start of the

| | program (a.k.a.: compiled-time variables)

 +----------+

| | ^

| | | <--- this part grows when the program creates

| | | new objects: reserve space for instance

| C | | variables in the new object

| | v

| | v <--- Direction of growth is "downwards"

| | v

+==========+

| | <---- this part is "free" memory

| | (Free means: unreserved !)

| |

| |

+==========+

| | ^

| | ^ <--- Direction of growth is "upwards"

| | ^

| D | |

| | | <--- This part grows when the program invokes

| System | | a function/method, reserve space for:

| stack | | (1) return address

| | | (2) parameter variables

| | v (1) local variables

 +----------+

 1. Parts A and B exist as soon as the program starts execution

 and will exist throughout the program execution.

 2. Part C will grow when program creates new objects

 (with the new operator in Java or malloc() in C)

 Part C is called the "system heap"

 3. Part D will grow when program invokes a function/method

 Part D is called the "system stack"

Implementing the System Stack

Just like a stack object in Java, in order to implement a stack, we need:

An array

A StackTop index

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

3 of 8 6/23/17, 12:23 PM

Unlike in a programming language, we have access to the entire computer memory when we

program in assembler !!!

So the system stack that is located at the end of the memory area:

Memory:

 0 +----------+

| | <--- this part contains the "code"

| A | This part of the memory is "write protected"

| | (can not - and should not - be modified)

| |

 +----------+

| | <--- this part contains "static variables"

| B | These variables exist at the start of the

| | program (a.k.a.: compiled-time variables)

 +----------+

| | ^

| | | <--- this part grows when the program creates

| | | new objects: reserve space for instance

| C | | variables in the new object

| | v

| | v <--- Direction of growth is "downwards"

| | v

+==========+

| | <---- this part is "free" memory

| | (Free means: unreserved !)

| |

| |

+==========+

| | ^

| | ^ <--- Direction of growth is "upwards"

| | ^

| D | |

| | | <--- This part grows when the program invokes

| System | | a function/method, reserve space for:

| stack | | (1) return address

| | | (2) parameter variables

| | v (1) local variables

 +----------+

do not need to be defined (as an array as in Java)

(The memory is there and it is reserved for us to make a stack)

All we need to implement the System Stack is:

A stacktop index

The system stack is always implemented by:

Using one of the registers in the CPU as stacktop index

Example:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

4 of 8 6/23/17, 12:23 PM

In M68000, the stacktop index is:

The address register A7

In Intel's CPU (Pentium, Core Duo...), the stacktop index is stored in:

The special purpose register (named) sp (= stack pointer)

So in M68000, the system stack is given as follows:

Memory:

 0 +----------+

| | <--- this part contains the "code"

| A | This part of the memory is "write protected"

| | (can not - and should not - be modified)

| |

 +----------+

| | <--- this part contains "static variables"

| B | These variables exist at the start of the

| | program (a.k.a.: compiled-time variables)

 +----------+

| | ^

| | | <--- this part grows when the program creates

| | | new objects: reserve space for instance

| C | | variables in the new object

| | v

| | v <--- Direction of growth is "downwards"

| | v

+==========+

| | <---- this part is "free" memory

| | (Free means: unreserved !)

| |

| |

A7 -->+==========+

| | ^

| | ^ <--- Direction of growth is "upwards"

| | ^

| D | |

| | | <--- This part grows when the program invokes

| System | | a function/method, reserve space for:

| stack | | (1) return address

| | | (2) parameter variables

| | v (1) local variables

 +----------+

Pushing values onto the System Stack

Suppose the System Stack is as follows before we push a new value:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

5 of 8 6/23/17, 12:23 PM

 +----------+

 | |

 +----------+

 | | (available, i.e., unused)

+----------+

A7 -->| Z |

+----------+ ^

| Y | ^ <--- Direction of growth is "upwards"

+----------+ ^

| | |

+----------+ |

| | |

| System | |

| stack | |

| | |

| | v

 +----------+

The Suppose the System Stack will be like this after we push a new value X:

 +----------+

 | |

 +----------+

A7 -->| X | (Memory space no longer available)

+----------+

 | Z |

+----------+ ^

| Y | ^ <--- Direction of growth is "upwards"

+----------+ ^

| | |

+----------+ |

| | |

| System | |

| stack | |

| | |

| | v

 +----------+

(The memory space is no longer available because all memory spaces "at and below" the stack

pointer A7 are used !!!!)

The following assembler instructions will push a integer (4 byte) value X onto the System Stack:

 suba.l #4, A7 // Move system stacktop up 4 bytes

 move.l X, (A7) // Store X in the top of the stack

De-allocating variables from the System Stack

The following assembler instructions will destroy (= unreserve memory)) a integer (4 byte) value

from the System Stack:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

6 of 8 6/23/17, 12:23 PM

 adda.l #4, A7 // Move system stacktop down 4 bytes

The system stack pointer

Stack pointer:

The stacktop index (A7) is more commonly known as:

(System) Stack pointer

It is usually abbreviated as: sp (for stack pointer)

Important functions of the system stack pointer A7

Function of the stack pointer A7:

A7 indicate the top of the stack; as such:

A7 points to the location in the stack that the push and pop operations

will operate

Another function of A7 is:

A7 marks the memory locations that are reserved (= currently used !!!)

Specifically:

 +----------+

 | |

| | AVAILABLE !!!! (not used)

 | |

 +----------+

 A7 -->| | ^

| | | USED !!!!

| | |

| System | | (reserved !!!!)

| stack | |

| | |

| | v

 +----------+

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

7 of 8 6/23/17, 12:23 PM

Therefore:

When you perform a push operation (= increase the stack size), you will:

create one or more variables (on the stack !!!)

When you perform a pop operation (= decrease the stack size), you will:

destroy one or more variables (on the stack !!!)

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

8 of 8 6/23/17, 12:23 PM

