CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

Implementing a Stack

e A stack is a data structure with two operation:

o void Push(int x): put the value "x" in the stack. The value "x" is put "at the top" of the stack.
o int Pop(): remove the top value off the stack. The value removed is returned.

Example:
(1) Initially: +-———————— + (empty stack)
(2) After Push(4): +---------- +
| 4 |
pomm - +
(3) After Push(9): +---------- +
| 9 | (new value get put ON TOP)
Fomm - +
| 4 |
Fomm - +
(4) After Push(l): +---------- +
| 1 | (new value get put ON TOP again)
Fomm - +
| 9 |
Fomm - +
| 4 |
Fomm - +
Suppose we have 3 variables "a", "b" and "c" defined....
(5) After a = Pop(): +---—---—---- +
| 9 | (top value is REMOVED !)
Fomm - +
| 4 |
Fomm - +
and a =1
(6) After b = Pop(): +---------- +
| 4 | (top value is REMOVED again !)
Fomm - +
and b =9
(7) After ¢ = Pop(): +-——-——-——----—- + (Stack is empty)
and c = 4

1 of 8 6/23/17,12:23 PM

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

e Stack in a program versus the System Stack

o The stack that you learned in Java is usually implemented using an array variable

Example: (CS171 material)

public class Stack

{
int[] A;
int stacktop; // Points to the top of the stack

public Stack(int size)

{
A = new int[size]; // Create the array to hold values in stack
stacktop = -1;

}

public void push(int x)
{

A[++stacktop] = x; // Move stack top and put x on the stack
}

public int pop()
{
return A[stacktop--];

}

0 When a program is running, the computer system will need to store various information items
(variables) in a stack

Therefore:

= All modern computers maintain a program stack (a.k.a. System stack) to manage
information

Information stored in the system stack include:

m function activation information (created when a function is called

(These function activation information will be removed (popped) when a function
returns (exits))

e The reason we want to use a stack is the order the elements enter and leave the stack is exactly the same
order of function activation and deactivation.

e The system stack is (always) stored inside the memory (memory stores everything :-))

¢ When a program is running, the memory is organized as follows:

2 of 8 6/23/17,12:23 PM

CS255 Syllabus

30f8

Memory
0 +-—-———————- +
| | <--- this part contains the "code"
| A | This part of the memory is "write protected"
| | (can not - and should not - be modified)
| |
dommmmm - +
| | <--- this part contains "static variables"
| B | These variables exist at the start of the
| | program (a.k.a.: compiled-time variables)
dommmmm - +
| |~
| | | <--- this part grows when the program creates
| || new objects: reserve space for instance
| Cc || variables in the new object
| | v
| | v <--- Direction of growth is "downwards"
| | v
t==========+
| | <---- this part is "free" memory
| | (Free means: unreserved !)
| |
| |
t==========+
| |
| | # <--- Direction of growth is "upwards"
| |~
| D [
| | | <--- This part grows when the program invokes
| System | | a function/method, reserve space for:
| stack (| (1) return address
| || (2) parameter variables
| | v (1) local variables
e +
1. Parts A and B exist as soon as the program starts execution
and will exist throughout the program execution.
2. Part C will grow when program creates new objects
(with the new operator in Java or malloc() in C)
Part C is called the "system heap"
3. Part D will grow when program invokes a function/method
Part D is called the "system stack"

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

¢ Implementing the System Stack

o Just like a stack object in Java, in order to implement a stack, we need:

®m An array
= A StackTop index

6/23/17,12:23 PM

CS255 Syllabus

4 of 8

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

o Unlike in a programming language, we have access to the entire computer memory when we
program in assembler !!!

So the system stack that is located at the end of the memory area:

Memory:

<--- this part contains the '"code"
This part of the memory is "write protected"
(can not - and should not - be modified)

| | <--- this part contains '"static variables"
| B | These variables exist at the start of the
| | program (a.k.a.: compiled-time variables)

<--- this part grows when the program creates
new objects: reserve space for instance
variables in the new object

|
|
|
v
v <--- Direction of growth is "downwards"
v

<---- this part is "free" memory
(Free means: unreserved !)

A <--- Direction of growth is "upwards"

A

<--- This part grows when the program invokes
a function/method, reserve space for:
(1) return address

|

|

|

|

| (2) parameter variables
v (1) local variables

System
stack

do not need to be defined (as an array as in Java)

(The memory is there and it is reserved for us to make a stack)

o All we need to implement the System Stack is:

= A stacktop index I

o The system stack is always implemented by:

m Using one of the registers in the CPU as stacktop indexl

Example:

6/23/17,12:23 PM

CS255 Syllabus

50f8

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

= In M68000, the stacktop index is:

‘ = The address register A7 I

= In Intel's CPU (Pentium, Core Duo...), the stacktop index is stored in:

‘ m The special purpose register (named) sp (= stack pointer)l

o So in M68000, the system stack is given as follows:

Memory:
[

|
| A
|
|
+ __________
|
| B
|
+ __________
|
|
|
| Cc
|
|
|
t==========
|
|
|
|

A7 —=->4==========
|
|
|
| D
|
| System
| stack
|
|
+ __________

<--- this part contains the '"code"
This part of the memory is "write protected"
(can not - and should not - be modified)

<--- this part contains "static variables"
These variables exist at the start of the
program (a.k.a.: compiled-time variables)

<--- this part grows when the program creates
new objects: reserve space for instance
variables in the new object

|
|
|
v
v <--- Direction of growth is "downwards"
v

<---- this part is "free" memory
(Free means: unreserved !)

A <--- Direction of growth is "upwards"

A

<--- This part grows when the program invokes
a function/method, reserve space for:
(1) return address

|

|

|

|

| (2) parameter variables
v (1) local variables

¢ Pushing values onto the System Stack

o Suppose the System Stack is as follows before we push a new value:

6/23/17,12:23 PM

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

dommm - +
| |
dommm - +
| | (available, i.e., unused)
e +
A7 -->| Z |
e + A
| Y | # <--- Direction of growth is "upwards"
e + A
| ([
e + |
| ([
| System | |
| stack (|
| ([
| | v
e +

dommm - +
| |
dommm - +
A7 -->| X | (Memory space no longer available)
e +
| Z |
e + A
| Y | # <--- Direction of growth is "upwards"
e + A
| [
e + |
| [
| System | |
| stack (|
| [
| | v
dommm - +

(The memory space is no longer available because all memory spaces "at and below" the stack
pointer A7 are used !!!!)

o The following assembler instructions will push a integer (4 byte) value X onto the System Stack:

suba.l #4, A7 // Move system stacktop up 4 bytes
move.l X, (A7) // Store X in the top of the stack

¢ De-allocating variables from the System Stack

o The following assembler instructions will destroy (= unreserve memory)) a integer (4 byte) value
from the System Stack:

6 of 8 6/23/17,12:23 PM

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

adda.l #4, A7 // Move system stacktop down 4 bytes

¢ The system stack pointer

o Stack pointer:

m The stacktop index (A7) is more commonly known as:

‘ m (System) Stack pointer I

m [t is usually abbreviated as: sp (for stack pointer)

¢ Important functions of the system stack pointer A7

o Function of the stack pointer A7:

m A7 indicate the top of the stack; as such:

= A7 points to the location in the stack that the push and pop operations
will operate

m Another function of A7 is:

m A7 marks the memory locations that are reserved (= currently used !!!) I

Specifically:

Fomm - +
| |
| | AVAILABLE !!!! (not used)
| |
pomm - +

A7 -->| |~
| | | USED !!!!
I |1
| System | | (reserved !!!!)
| stack ||
I |1
I | v
pomm - +

7 of 8 6/23/17,12:23 PM

CS255 Syllabus

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

o Therefore:

= When you perform a push operation (= increase the stack size), you will:

m create one or more variables (on the stack !!!) I

= When you perform a pop operation (= decrease the stack size), you will:

m destroy one or more variables (on the stack !!!) I

8 of 8

6/23/17,12:23 PM

