
How about more complex functions ?

Instruction set of a CPU

The instructions that a CPU can execute can e divided into 3 categories:

Data movement (= copy)

Arithmetic (+, -, *, %, /), logic (and, or, not, including bitwise operations), shift or rotate instructions

Branching (including call and return)

Take a look at the list of instructions that the popular Intel can execute: click here

How does a computer compute more complex values, like "sin(x)"

Answer:

Use interpolation !!!!

From Mathematics:

We can approximate a (any) function with a polynomial to arbitrary accuracy

(And we can compute (evaulate) a polynomial using only +, -, * and / operations !!!!)

(Google "Taylor serie" and "Lagrange interpolation" for more details.)

I found a highly optimized (= very good approximation with very few operations) of the sin(x) function:

 sin(x) ~= 0.775 * ((4/π)*x + (4/π2)*x2) + 0.225 * ((4/π)*x + (4/π2)*x2)2

Here is the code in C:

 #define pi 3.14159265358979l

 double mySine(double x)
 {
 const double B = 4.0/pi; // 2 special "interpolation constants

http://www.mathcs.emory.edu/~cheung/Courses/...

1 of 3 06/12/2017 01:59 PM

 const double C = 4.0/(pi*pi);

 double y;

 y = B*x - C*x*x; // Highly optimized (= hokus pokus)
 y = 0.775*y + 0.225*y*y; // approximation of sin(x)
 return y;
 }

Example Program: (Demo above code)

Prog file: click here

How to run the program:

Right click on link and save in a scratch directory

To compile: gcc sin-appr.c -lm
To run: ./a.out

Output:

x = 0.0, sin(x) = 0.000000, mySine(x) = 0.000000, Diff = 0.000000 (NaN%)
x = 0.1, sin(x) = 0.099833, mySine(x) = 0.098954, Diff = 0.000879 (0.88%)
x = 0.2, sin(x) = 0.198669, mySine(x) = 0.197580, Diff = 0.001089 (0.55%)
x = 0.3, sin(x) = 0.295520, mySine(x) = 0.294617, Diff = 0.000903 (0.31%)
x = 0.4, sin(x) = 0.389418, mySine(x) = 0.388895, Diff = 0.000524 (0.13%)
x = 0.5, sin(x) = 0.479426, mySine(x) = 0.479329, Diff = 0.000097 (0.02%)
x = 0.6, sin(x) = 0.564642, mySine(x) = 0.564926, Diff = -0.000284 (0.05%)
x = 0.7, sin(x) = 0.644218, mySine(x) = 0.644781, Diff = -0.000564 (0.09%)
x = 0.8, sin(x) = 0.717356, mySine(x) = 0.718077, Diff = -0.000721 (0.10%)
x = 0.9, sin(x) = 0.783327, mySine(x) = 0.784086, Diff = -0.000759 (0.10%)
x = 1.0, sin(x) = 0.841471, mySine(x) = 0.842168, Diff = -0.000697 (0.08%)
x = 1.1, sin(x) = 0.891207, mySine(x) = 0.891773, Diff = -0.000565 (0.06%)
x = 1.2, sin(x) = 0.932039, mySine(x) = 0.932438, Diff = -0.000399 (0.04%)
x = 1.3, sin(x) = 0.963558, mySine(x) = 0.963792, Diff = -0.000234 (0.02%)
x = 1.4, sin(x) = 0.985450, mySine(x) = 0.985549, Diff = -0.000099 (0.01%)
x = 1.5, sin(x) = 0.997495, mySine(x) = 0.997513, Diff = -0.000018 (0.00%)

As you know, sin(x) is periodic.

The values compared are between [0..π/2]; which is the main period.

You can always reduce any x value to some value inside this range (and then to obtain the function value).

Doing so little work to get to < 1% error in sin(x) for any value of x is not too shaby !!!!

Experiment

I found this page on a high accurate approximation of sin/cos:

 //always wrap input angle to -PI..PI
 if (x < -3.14159265)
 x += 6.28318531;
 else
 if (x > 3.14159265)
 x -= 6.28318531;

 //compute sine
 if (x < 0)
 {
 sin = 1.27323954 * x + .405284735 * x * x;

 if (sin < 0)
 sin = .225 * (sin *-sin - sin) + sin;
 else
 sin = .225 * (sin * sin - sin) + sin;
 }
 else
 {
 sin = 1.27323954 * x - 0.405284735 * x * x;

 if (sin < 0)
 sin = .225 * (sin *-sin - sin) + sin;
 else

http://www.mathcs.emory.edu/~cheung/Courses/...

2 of 3 06/12/2017 01:59 PM

 sin = .225 * (sin * sin - sin) + sin;
 }

 //compute cosine: sin(x + PI/2) = cos(x)
 x += 1.57079632;
 if (x > 3.14159265)
 x -= 6.28318531;

 if (x < 0)
 {
 cos = 1.27323954 * x + 0.405284735 * x * x;

 if (cos < 0)
 cos = .225 * (cos *-cos - cos) + cos;
 else
 cos = .225 * (cos * cos - cos) + cos;
 }
 else
 {
 cos = 1.27323954 * x - 0.405284735 * x * x;

 if (cos < 0)
 cos = .225 * (cos *-cos - cos) + cos;
 else
 cos = .225 * (cos * cos - cos) + cos;
 }

The URL: http://lab.polygonal.de/?p=205

Notice you only use arithmetic opertions !!!

Program it and see how accurate it is....

http://www.mathcs.emory.edu/~cheung/Courses/...

3 of 3 06/12/2017 01:59 PM

