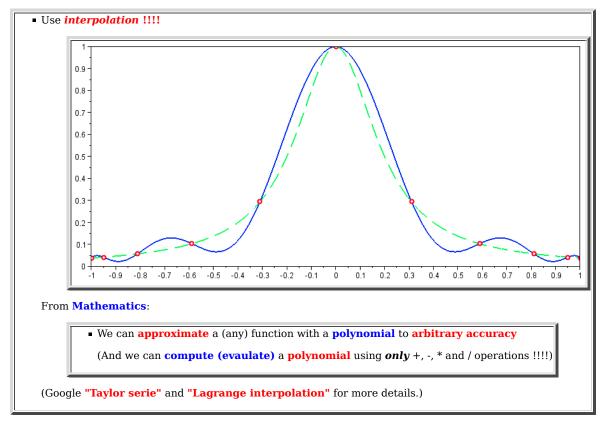
How about more complex functions ?

- Instruction set of a CPU
 - The **instructions** that a CPU can execute can e divided into 3 categories:
 - Data movement (= copy)
 - Arithmetic (+, -, *, %, /), logic (and, or, not, including bitwise operations), shift or rotate instructions
 - Branching (including call and return)

 \circ Take a look at the list of instructions that the popular Intel can execute: $\underline{click\ here}$

• How does a computer compute more complex values, like "sin(x)"

• Answer:



• I found a highly optimized (= very good approximation with very few operations) of the sin(x) function:

 $\sin(x) \sim 0.775 * ((4/\pi)*x + (4/\pi^2)*x^2) + 0.225 * ((4/\pi)*x + (4/\pi^2)*x^2)^2$

 \circ Here is the code in C:

#define pi 3.14159265358979l	
<pre>double mySine(double x) </pre>	
const double B = 4.0/pi;	<pre>// 2 special "interpolation constants</pre>

Example

const double C = 4.0/(pi*pi); double y; y = B*x - C*x*x; // Highly optimized (= hokus pokus) y = 0.775*y + 0.225*y*y; // approximation of sin(x) return y; }

• Example Program: (Demo above code)

Prog file: <u>click here</u>

How to run the program:

• Right click on link and save in a scratch directory

To compile: gcc sin-appr.c -lm
To run: ./a.out

Output:

x	=	0.0,	<pre>sin(x)</pre>	=	0.000000,	mySine(x)	=	0.000000,	Diff =	-	0.000000	(NaN%)
x	=	0.1,	<pre>sin(x)</pre>	=	0.099833,	mySine(x)	=	0.098954,	Diff =	-	0.000879	(0.88%)
x	=	0.2,	<pre>sin(x)</pre>	=	0.198669,	mySine(x)	=	0.197580,	Diff =	-	0.001089	(0.55%)
x	=	0.3,	<pre>sin(x)</pre>	=	0.295520,	mySine(x)	=	0.294617,	Diff =	-	0.000903	(0.31%)
x	=	0.4,	<pre>sin(x)</pre>	=	0.389418,	mySine(x)	=	0.388895,	Diff =		0.000524	(0.13%)
x	=	0.5,	<pre>sin(x)</pre>	=	0.479426,	mySine(x)	=	0.479329,	Diff =	-	0.000097	(0.02%)
x	=	0.6,	<pre>sin(x)</pre>	=	0.564642,	mySine(x)	=	0.564926,	Diff =		-0.000284	(0.05%)
x	=	0.7,	<pre>sin(x)</pre>	=	0.644218,	mySine(x)	=	0.644781,	Diff =		-0.000564	(0.09%)
x	=	0.8,	<pre>sin(x)</pre>	=	0.717356,	mySine(x)	=	0.718077,	Diff =	-	-0.000721	(0.10%)
x	=	0.9,	<pre>sin(x)</pre>	=	0.783327,	mySine(x)	=	0.784086,	Diff =		-0.000759	(0.10%)
x	=	1.0,	<pre>sin(x)</pre>	=	0.841471,	mySine(x)	=	0.842168,	Diff =		-0.000697	(0.08%)
x	=	1.1,	<pre>sin(x)</pre>	=	0.891207,	mySine(x)	=	0.891773,	Diff =	-	-0.000565	(0.06%)
x	=	1.2,	<pre>sin(x)</pre>	=	0.932039,	mySine(x)	=	0.932438,	Diff =	-	-0.000399	(0.04%)
x	=	1.3,	<pre>sin(x)</pre>	=	0.963558,	mySine(x)	=	0.963792,	Diff =		-0.000234	(0.02%)
x	=	1.4,	sin(x)	=	0.985450,	mySine(x)	=	0.985549,	Diff =		-0.000099	(0.01%)
x	=	1.5,	<pre>sin(x)</pre>	=	0.997495,	<pre>mySine(x)</pre>	=	0.997513,	Diff =		-0.00018	(0.00%)

As you know, sin(x) is **periodic**.

The values compared are between $[0..\pi/2]$; which is the main period.

You can always reduce any x value to some value inside this range (and then to obtain the function value).

Doing so little work to get to < 1% error in sin(x) for any value of x is not too shaby !!!!

• Experiment

• I found this page on a **high accurate** approximation of **sin/cos**:

```
//always wrap input angle to -PI..PI
if (x < -3.14159265)</pre>
   x += 6.28318531;
else
if (x > 3.14159265)
    x -= 6.28318531;
//compute sine
if (x < 0)
    sin = 1.27323954 * x + .405284735 * x * x;
    if (sin < 0)
sin = .225 * (sin *-sin - sin) + sin;
    else
         sin = .225 * (sin * sin - sin) + sin;
}
else
£
    sin = 1.27323954 * x - 0.405284735 * x * x;
    if (sin < \theta)
         sin = .225 * (sin *-sin - sin) + sin;
    else
```

```
sin = .225 * (sin * sin - sin) + sin;
}
//compute cosine: sin(x + PI/2) = cos(x)
x += 1.57079632;
if (x > 3.14159265)
x -= 6.28318531;
if (x < 0)
{
    cos = 1.27323954 * x + 0.405284735 * x * x;
    if (cos < 0)
        cos = .225 * (cos *-cos - cos) + cos;
    else
        cos = .225 * (cos * cos - cos) + cos;
}
else
{
    cos = 1.27323954 * x - 0.405284735 * x * x;
    if (cos < 0)
        cos = .225 * (cos *-cos - cos) + cos;
}
else
{
    cos = 1.27323954 * x - 0.405284735 * x * x;
    if (cos < 0)
        cos = .225 * (cos *-cos - cos) + cos;
else
        cos = .225 * (cos *-cos - cos) + cos;
else
        cos = .225 * (cos *-cos - cos) + cos;
}
</pre>
```

The URL: <u>http://lab.polygonal.de/?p=205</u>

Notice you only use arithmetic opertions !!!

Program it and see how accurate it is....