
The DIVS instruction - know when to use ext to convert into long

Review: the divide instruction in M68000

M68000 can only divide a 32-bits integer number by a 16-bits integer
number

The syntax of the DIVS instruction is:

 DIVS <ea>, Dn Divides a 32 bit value in data register Dn
by a 16-bit value specified by <ea>

 (1) the quotient is stored in the lower 16 bits of data register Dn

 (2) the remainder is stored in the upper 16 bits of data register Dn

Review: SWAP

SWAP:

The "SWAP Dn" instruction exchanges the upper and lower halves
of the data register Dn.

Example:

 +----------+----------+----------+----------+
 D0 = | 00000000 | 00000001 | 00000000 | 00000010 |
 +----------+----------+----------+----------+

 After SWAP D0:

 +----------+----------+----------+----------+
 D0 = | 00000000 | 00000010 | 00000000 | 00000001 |
 +----------+----------+----------+----------+

Division with integer

Fact:

The quotient and the remainder of DIVS are 16 bits results

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

1 of 4 06/12/2017 01:56 PM

An int value is represented in 32 bits

Therfore:

You must convert the 16 bits (quotient or remainder)
into 32 bits before you can store it in an int variable

Example: quotient

int i, j, k;

 k = i / j;

 In assembler:

MOVE.L i, D0 * Get 32 bits from i into D0
MOVE.L j, D1 * Get 32 bits from j into D0
DIVS D1, D0 * Divide 32 bits in D0 by 16 bits in D1

 (We actually converted the int in D1 to a short
 It will work as long as j is small)

 * The quotient is stored as 16 bits
 * We must convert to 32 bits before storing result to int variable k !!!

EXT.L D0 * The quotient is now stored as 32 bits

MOVE.L D0, k * Store 32 bits quotient to the int varibale k

Example: remainder

int i, j, k;

 k = i % j;

 In assembler:

MOVE.L i, D0 * Get 32 bits from i into D0
MOVE.L j, D1 * Get 32 bits from j into D0
DIVS D1, D0 * Divide 32 bits in D0 by 16 bits in D1

 (We actually converted the int in D1 to a short
 It will work as long as j is small)

SWAP D0 * Move the remainder to the lower 16 bits

 * The remainder is stored as 16 bits
 * We must convert to 32 bits before storing result to int variable k !!!

EXT.L D0 * The remainder is now stored as 32 bits

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

2 of 4 06/12/2017 01:56 PM

MOVE.L D0, k * Store 32 bits remainder to the int variable k

More examples

More examples:

 int a;
 short b;
 byte c;

 a = b / c;
 move.w b, d0 (16 bits valid in d0)

 ext.l d0 (You need 32 bits to divide)
 move.b c, d1 (8 bits valid in d1)
 ext.w d1 (You need 16 bits valid to divide)

 divs d1, d0 (Quotient is 16 bits in d0)
 ext.l d0 (Make 32 bit representation)
 move.l d0, a (store 32 bits in a)

 b = a / c;
 move.l a, d0 (32 bits valid in d0)

 move.b c, d1 (8 bits valid in d1)
 ext.w d1 (You need 16 bits valid to divide)

 divs d1, d0 (Quotient is 16 bits in d0)
 move.l d0, b (store 16 bits in b)

 c = a / b;
 move.l a, d0 (32 bits valid in d0)

 move.w b, d1 (16 bits valid in d1)

 divs d1, d0 (Quotient is 16 bits in d0)
 (We will only use 8 bits)

 move.b d0, c (store 8 bits in c)

Compute the remainder: (you just have to swap the result of the division)

 int a;
 short b;
 byte c;

 a = b % c;
 move.w b, d0 (16 bits valid in d0)

 ext.l d0 (You need 32 bits to divide)
 move.b c, d1 (8 bits valid in d1)
 ext.w d1 (You need 16 bits valid to divide)

 divs d1, d0 (Quotient is 16 bits in d0)
 swap d0 (Remainder is now the lower 16 bits)
 ext.l d0 (Make 32 bit representation)

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

3 of 4 06/12/2017 01:56 PM

 move.l d0, a (store 32 bits in a)

 b = a % c;
 move.l a, d0 (32 bits valid in d0)

 move.b c, d1 (8 bits valid in d1)
 ext.w d1 (You need 16 bits valid to divide)

 divs d1, d0 (Quotient is 16 bits in d0)
 swap d0 (Remainder is now the lower 16 bits)
 move.l d0, b (store 16 bits in b)

 c = a % b;
 move.l a, d0 (32 bits valid in d0)

 move.w b, d1 (16 bits valid in d1)

 divs d1, d0 (Quotient is 16 bits in d0)
 swap d0 (Remainder is now the lower 16 bits)

 (We will only use 8 bits)
 move.b d0, c (store 8 bits in c)

Example Program: (Demo above code)

Prog file: click here

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

4 of 4 06/12/2017 01:56 PM

