
The MULS instruction - know when to use ext.l to convert into long

RECALL: Mulitply instruction in M68000

M68000 can only multiply two 16-bits integers (due to the technological
limitation at the time - 1980)

The syntax of the multiply instruction of M68000 is:

 MULS <ea>, Dn Multiply the 16 bit integer value in
the operand specified by <ea> to
the 16 bit value in data register Dn

The result is always 32 bits and it is
stored in data register Dn

Notice that you do not have any choice for operand size.

Multiple int data types

Facts:

int data type uses 32 bytes to represent the value

When an int is used in the muls instruction:

The 32 bit representation is truncated to a 16 bit
representation

Example:

 int i1, i2, i3;

 i3 = i1 * i2;

 In assembler code:
 move.l i1,D0 * get 32 bits value i1 in reg D0

 move.l i2,D1 * get 32 bits value i2 in reg D1

 muls D1,D0 * D0 = D0*D1
 * We only use 16 bits in D0 and D1

 * So we have converted the int

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

1 of 3 06/12/2017 01:56 PM

 * into a short before we multiply !!
 * Note: result is correct as long as
 * the values in D0 and D1 is small

 move.l D0,i3 * Store i1*i2 to i3
 * The product is 32 bits !!!

Multiply with byte size operands

Important fact:

MULS will always use 16 bits operands !!!

So we must convert a byte (8 bits) representation into a 16 bit
representation before we use MULS !!!

Example:

 byte b1, b2, b3;

 b3 = b1 * b2;

 In assembler code:

 MOVE.B b1, D0 * D0 = b1 (8 bits)
 EXT.W D0 * D0 now has a 16 bits representation !!

 MOVE.B b2, D1 * D1 = b2 (8 bits)
 EXT.W D1 * D1 now has a 16 bits representation !!

 MULS D1, D0 * D0 = b1 * b2 (32 bits)
 * The product is 32 bits !!!

 MOVE.B D0, b3 * Move byte value to b3
 (We have actually converted an int
 into a byte !)

Try out this demo program yourself: click here

Some more examples

More examples:

 int a;
 short b;

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

2 of 3 06/12/2017 01:56 PM

 byte c;

 a = b * c;
 move.w b, d0 (16 bits valid in d0)

 move.b c, d1 (8 bits valid in d1)
 ext.w d1 (16 bits valid in d1)

 * Now have two 16 bits values and can use muls !!

 muls d0, d1 (32 bit result in d1)
 move.l d1, a (store 32 bits in a)

 b = a * c;
 move.l a, d0 (32 bits valid in d0)
 (We will only use 16 bits)

 move.b c, d1 (8 bits valid in d1)
 ext.w d1 (16 bits valid in d1)

 * Now have two 16 bits values and can use muls !!

 muls d0, d1 (32 bit result in d1)
 (We will only use 16 bits)

 move.w d1, b (store 16 bits in b)

 c = a * b;
 move.l a, d0 (32 bits valid in d0)
 (We will only use 16 bits)

 move.w c, d1 (16 bits valid in d1)

 * muls will only use 16 bits from d0

 muls d0, d1 (32 bit result in d1)
 (We will only use 8 bits)

 move.b d1, c (store 8 bits in c)

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

3 of 3 06/12/2017 01:56 PM

