
Mixed type operations with arrays

Important facts when using arrays

Important facts:

An address is used to identify a memory location

An address is like a social security number for a memory cell
!!!

An address is always 32 bits

A SSN for humans is always 9 digits:

 123-45-7890
 090-00-0012 <---- Leading 0's are significant !!!
 000-00-0001 <---- Leading 0's are significant !!!

Therfore:

You must use:

 move.l #Label, * Use .l for 32 bits address !!!

Assignment with arrays of mixed data type

Large = small

int A[10];
 short B[10];

 A[2] = B[3];

 In assembler code:

 movea.l #B, a0 An address is always 32 bits,
 so use movea.l

 move.w 6(a0), d0 d0 = B[3] (16 bits)
 You are transfering B[3]

 which is a short, so move.w

 ext.l d0 convert B[3] into 32 bits

http://www.mathcs.emory.edu/~cheung/Courses/...

1 of 3 06/12/2017 01:55 PM

 movea.l #A, a0 An address is always 32 bits,
 so use movea.l

 move.l d0, 8(a0) You are transfering 32 bits
 so move.l

Small = large (dangerous conversion !)

 int A[10];
 short B[10];

 B[3] = A[2];

 In assembler code:

 movea.l #A, a0 An address is always 32 bits,
 so use movea.l
 move.l 8(a0), d0 d0 = A[2] (32 bits)

movea.l #B, a0 An address is always 32 bits,
 so use movea.l

move.2 d0, 6(a0) Transfer only the lower 16 bits of d0
 into B[3]

Calculations with arrays of mixed type: convert smaller to larger representation first

Example 1: int = int + short

 In Java:

 int A[10];
 short B[10];

 A[4] = A[7] + B[5];

 In assembler:

 movea.l #A, a0 * Get the base address of array A in A0
 move.l 28(a0), d0 * Get the int value A[7] in D0

 movea.l #B, a1 * Get the base address of array B in A1
 move.w 10(a1), d1 * Get the short value B[5] in D1

ext.l d1 * Convert 16 bit repr to 32 bit repr

 add.l d1, d0 * Add two 32 bit numbers together

 move.l d0, 28(a0) * Store the 32 bits result in A[4]

Example 2: short = int + short

 In Java:

 int A[10];

http://www.mathcs.emory.edu/~cheung/Courses/...

2 of 3 06/12/2017 01:55 PM

 short B[10];

B[4] = (short) (A[7] + B[5]);

 In assembler:

 movea.l #A, a0 * Get the base address of array A in A0
 move.l 28(a0), d0 * Get the int value A[7] in D0

 movea.l #B, a1 * Get the base address of array B in A1
 move.w 10(a1), d1 * Get the short value B[5] in D1

ext.l d1 * Convert 16 bit repr to 32 bit repr

 add.l d1, d0 * Add two 32 bit numbers together
* The result is 32 bits !!!

 move.w d0, 8(a0) * Store only 16 bits from D0 in B[4]

http://www.mathcs.emory.edu/~cheung/Courses/...

3 of 3 06/12/2017 01:55 PM

