
Arithmetic expressions using integers of different sizes

Automatic conversion in arithmetic operations

Recall that:

The CPU can only operate on 2 operands of the same
size

2 integers
2 shorts
2 bytes

Therefore:

Mixed size operands must be converted
before the CPU can perform the desired
operation !!!

Question:

How show the operands of different size be converted
???

Answer from CS170:

When a lower-precision type and a higher-precision
type are used in an arithmetic operation:

the lower-precision representation is
converted to the higher-precision
representation first before the arithmetic
operation is performed

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

1 of 5 06/12/2017 01:55 PM



Example of mixed size operations

Integer = Integer + Integer

In Java:

   int i, j;

   i = i + j;       

In assembler: (no conversion is needed !)

   move.l i, d0     * Get 32 bits from i to D0
   move.l j, d1     * Get 32 bits from j to D1

   add.l  d0,d1     * Same szie, we can add

   move.l d1, i     * Store 32 bits result in i            

Integer = Integer + Short

In Java:

   int i;
   short s;

   i = i + s;       

In assembler:

   move.l i, d0      * Get 32 bits from i to D0
   move.w s, d1      * Get 16 bits from s to D1

   ext.l  d1         * Converts 16 bit repr to 32 bit repr  

   add.l  d0,d1      * Add the two 32 bits numbers together
   move.l d1, i      * Store the 32 bit number in i

Demo: /home/cs255000/demo/asm/ext5.s

Short = Short + Integer

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

2 of 5 06/12/2017 01:55 PM



In Java:

   int i;
   short s;

   s = (short) (s + i);      // Casting means danger !    

In assembler:

   move.l i, d0      * Get 32 bits from i to D0
   move.w s, d1      * Get 16 bits from s to D1

   ext.l  d1         * Converts 16 bit repr to 32 bit repr  

   add.l  d0,d1      * Add the two 32 bits numbers together
   move.w d1, s      * Store the 16 bit number in s

NOTE:

The assembler instruction:

   move.w d1, s      * Store the 16 bit number in s    

can result in overflow error

For this reason, in Java, the programmer must use an
explicit casting:

     s = (short) (s + i) ;          

The Java compiler will not allow you to write this:

   s = s + i;         // Java will report error !!!

The (short) casting operation is to let you tell Java that you know
it's dangerous and "please let me do it anyway".

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

3 of 5 06/12/2017 01:55 PM



Example Program: (Demo above code)                                                

Prog file: click here

How to run the program:

Right click on link and save in a scratch directory

To compile:   as255 ext2
To run:          m680000

The assembler programmer: power and responsibility

Assembler programming:

Assembler programming is the most difficult way to
program a computer

It is assumed that assembler programmers
know what they are doing.....

Assembler programmers do not ask permission to do
anything !!!

(If you dare to program in assembler, you should be man enough
to take on the responsibility to know what to do... You are not in
Kansas anymore (to quote Dorothy))

Summary

     int i;
     short s;
     byte b;

How to perform all possible conversion between int, short and byte:

     s = b;      --->   MOVE.B  b, D0

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

4 of 5 06/12/2017 01:55 PM



EXT.W   D0
MOVE.W  D0, s

     b = s  --->   MOVE.W  s, D0
                        MOVE.B  D0,b       * Can result in overflow....

     i = s;      --->   MOVE.W  s, D0
EXT.L   D0
MOVE.L  D0, i

     s = i;  --->   MOVE.L  i, D0
                        MOVE.W  D0,s       * Can result in overflow....

     i = b;      --->   MOVE.B  b, D0
EXT.W   D0         * First convert to WORD
EXT.L   D0         * THEN convert to LONG WORD !
MOVE.L  D0, i

     b = i;  --->   MOVE.L  i, D0
                        MOVE.B  D0,b       * Can result in overflow....

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

5 of 5 06/12/2017 01:55 PM


