
Converting between integer representations of different sizes

Integer types of different sizes

Recall that programming languages provide integer types of different size:

byte (1 byte integer (whole number) representation for values between -127..128)
short (2 byte integer (whole number) representation for values between -32767..32768)
int (4 byte integer (whole number) representation)

Representing the same value with different sizes

Fact:

We can represent the same value using integer representation of
different sizes

Example 1: (positive values)

 The value 3 (three dots) is represented as follows:

 Using 1 byte (8 bits): 00000011
 Using 2 bytes (16 bits): 0000000000000011
 Using 4 bytes (32 bits): 00000000000000000000000000000011

Example 2: (negative values)

 The value -3 is represented as follows:

 Using 1 byte (8 bits): 11111101
 Using 2 bytes (16 bits): 1111111111111101
 Using 4 bytes (32 bits): 11111111111111111111111111111101

Conversion

Conversion:

Conversion = a procedure to transform one kind of representation into
another kind of representation such that:

The value of that is represented by both representation are the
same

Example:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

1 of 5 06/12/2017 01:54 PM

 The representation of the value 3 in 8 bits is:

00000011

 When we convert this 8 bit representaion into a 16 bit representation,
 the result is:

0000000000000011

 Because:

 The binary number represents the (same) value 3 !!!

General procedure to convert a smaller representation into a larger representation

Conversion procedure:

If the value represented by the smaller representation is positive:

Add a bunch of leading 0 digits to the smaller representation

(The number of leading 0 digits is equal to the difference in size
between the larger and the smaller representation)

If the value represented by the smaller representation is negative:

Add a bunch of leading 1 digits to the smaller representation

(The number of leading 1 digits is equal to the difference in size
between the larger and the smaller representation)

Note:

Coincidentally, the leading binary digit in a 2's complement
representation is:

0 when the value represented is positive
1 when the value represented is negative

We can replace the above 2 rules (one for positive values and one for negative values)
by one single rule:

Let x be the leading digit in the binary (2's complement) representation

To convert a smaller representation into a larger representation:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

2 of 5 06/12/2017 01:54 PM

Add a bunch of leading x bits to the smaller representation

(The number of leading 1 digits is equal to the difference in size
between the larger and the smaller representation)

"Sign extention"

The operation:

Add a bunch of leading x bits to a smaller representation

is called:

Sign-bit extension or sign-extension for short....

The M68000 ext instruction:

The ext instruction in M68000 is used to:

Convert a smaller 2's complement representation into a larger 2's
complement representation

Syntax:

 EXT.W Dn Converts an 8-bits 2's complement representation in reg Dn
 to a 16 bits 2's complement representation (in reg Dn)

 EXT.L Dn Converts a 16-bits 2's complement representation in reg Dn
 to a 32 bits 2's complement representation (in reg Dn)

Note:

There is no instruction to convert a byte (8 bits) representation to a long
(32 bits) representation.

However, we can accomplish the conversion from a byte (8 bits)
representation to a long (32 bits) representation in 2 steps:

 * We start with an 8 bit representation for some value in register Dn

 EXT.W Dn * Now we have a 16 bit representation in Dn for the same value
 EXT.L Dn * Now we have a 32 bit representation in Dn for the same value

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

3 of 5 06/12/2017 01:54 PM

Examples:

 (1) Starting with:

 +----------+----------+----------+----------+
 D0 = | 10101010 | 01010101 | 10101010 | 11111110 |
 +----------+----------+----------+----------+
 ^^^^^^^^

This byte represents
the value "-2"

 After "EXT.W D0", we will have:

 +----------+----------+----------+----------+
 D0 = | 10101010 | 01010101 | 11111111 | 11111110 |
 +----------+----------+----------+----------+
 ^^^^^^^^^^^^^^^^^^^

 This WORD represents
 the (same) value "-2" !

 (2) Starting with:

 +----------+----------+----------+----------+
 D0 = | 10101010 | 01010101 | 11111111 | 11111100 |
 +----------+----------+----------+----------+
 ^^^^^^^^^^^^^^^^^^^

 This WORD represents
 the value "-2"

 After "EXT.L D0", we will have:

 +----------+----------+----------+----------+
 D0 = | 11111111 | 11111111 | 11111111 | 11111110 |
 +----------+----------+----------+----------+
 ^^^

 This LONG WORD represents the (same) value "-2" !

Example Program: (Demo above code)

Prog file: click here (in /home/cs255000/demo/asm/ext1.s)

How to run the program:

Right click on link and save in a scratch directory

To compile: as255 ext1
To run: m68000

"Converting" a longer representation into a shorter representation

Fact:

A shorter representation for the same value can be obtained by:

Truncating the upper bits of the longer representation

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

4 of 5 06/12/2017 01:54 PM

Example 1: (positive values)

 The value 3 (three dots) is represented as follows:

 Using 4 bytes (32 bits): 00000000000000000000000000000011

 Using 2 bytes (16 bits): 0000000000000011 (= truncate upper 16 bits)
 Using 1 byte (8 bits): 00000011 (= truncate upper 24 bits)

Example 2: (negative values)

 The value -3 is represented as follows:

 Using 4 bytes (32 bits): 11111111111111111111111111111101

 Using 2 bytes (16 bits): 1111111111111101
 Using 1 byte (8 bits): 11111101

In other words:

If you need to "convert":

 int ---> short
 int ---> byte
 short ---> byte

all you need to do is:

Copy the lower part of the longer representation to the
destination variable of the shorter type

Example: in next webpage !!!

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

5 of 5 06/12/2017 01:54 PM

