CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

The ADD and SUBTRACT instructions

e The ADD machine instruction

o Fact:

= The M68000 can perform the add operation in a data
register or in an address register

= The CPU can only add values of the same representation
with each other

In other words:

» The CPU can add 2 byte representations,
or
= The CPU can add 2 word (2 bytes)
representations, or
= The CPU can add 2 long word (4 bytes)
representations,

e ADD: add in a data register

o Instruction to add in a data register:

ADD.B Src, Dn * Add the 8 bits values: Dn = Dn + Src

ADD.W Src, Dn * Add the 16 bits values: Dn = Dn + Src

ADD.L Src, Dn * Add the 32 bits values: Dn = Dn + Src
o Example 1: adding integer variables

int x, y, z; (We assumed x,y,z have been defined)

z=XxX+Yy;
In assembler code:

move.l x,D0 * Get 32 bits representation of x in DO

1of5 06/12/2017 01:54 PM

CS255 Syllabus

20f5

move.l y,D1 * Get 32 bits representation of y in D1

add.1l DO,D1 * Add the two 32 bits representations together
* The sum is stored in D1

move.l D1,z * Store the 32 bits representation in z

http://www.mathcs.emory.edu/~cheung/Courses/...

o Example 2: adding short variables

short x, y, z;
zZ=XxX+Y;

In assembler code:

(We assumed x,y,z have been defined)

move.w x,D0 * Get 16 bits representation of x in DO
move.w y,Dl1 * Get 16 bits representation of y in D1

add.w DO,D1 * Add the two 16 bits representations together
* The sum is stored in D1 (16 bits)

move.w D1,z * Store the 16 bits representation in z

o Example 3: adding integer array elements

B[4] = B[3] + B[7];
In assembler code:
movea.l #B,A0

move.l 12(A0),D0O
move.l 28(A0),D1

add.l Do,D1

move.l D1,16(A0)

int B[10] (We assumed array B have been defined)

*

*
*

*

A0 = base address of array B

Get 32 bits representation of B[3] in DO
Get 32 bits representation of B[7] in D1

Add the two 32 bits representations together
The sum is stored in D1

Store the 32 bits representation in B[4]

o Example 4: adding short array elements

short B[10; (We assumed array B have been defined)

06/12/2017 01:54 PM

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

B[4] = B[3] + B[7];
In assembler code:

movea.l #B,A0 * AO@ = base address of array B
* An address is 32 bits, so we use .1 !!!

move.w 6(A0),DO0 * Get 16 bits representation of B[3] in DO
move.w 14(A@),D1 * Get 16 bits representation of B[7] in D1

add.w Do,D1 * Add the two 16 bits representations together
* The sum is stored in D1 (16 bits)

move.w D1,8(A0) * Store the 16 bits representation in B[4]

e ADDA: Adding in an address register

o Fact:

= When the destination of the add instruction is an
address register, the instruction nmemonic gets an a
appended to the tail

= When the destination is an address register, you can only
use word size and long word size instructions

o The instruction to add in an address register is:

ADDA.W Src, An * Add the 16 bit value Src to the address reg An
* I.e.: An = An + Src

ADDA.L Sec, An * Add the 32 bit value Src to the address reg An

*

I.e.: An = An + Src

e The SUB machine instruction

o Subtract in a data register:

SUB.B Src, Dn * Subtract the 8 bits values: Dn
SUB.W Src, Dn * Subtract the 16 bits values: Dn

Dn - Src
Dn - Src

3of5 06/12/2017 01:54 PM

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

SUB.L Src, Dn * Subtract the 32 bits values: Dn = Dn - Src

o Note:

= The subtract instruction is very similar to the add
instruction

= You can use the above examples to learn about the
subtract instruction

The examples will work if you replace:

ADD ---> SUB

o Subtract in an address register:

An - Src
An - Src

SUBA.W Src, An * Subtract the 16 bits values: An
SUBA.L Src, An * Subtract the 32 bits values: An

¢ Reminder: When to use data and address registers

o Data registers:

| = When you perform calculation: always use data registersl

o Address registers:

= When you access an array element or a field in a linked
list: use address registers

Example:

40f5 06/12/2017 01:54 PM

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

short B[10; (We assumed array B have been defined)
B[4] = B[3] + B[7];
In assembler code:

/*

We want to access B[3]:
==> put base address in address register

*/
movea.l #B,A0 * AO = base address of array B
* An address is 32 bits, so we use .l !!!
/*
We want to compute B[3] + B[7]
==> put the values B[3] and B[7] in data register
*/

move.w 6(A0),D0 * Get 16 bits representation of B[3] in DO
move.w 14(A0),D1 * Get 16 bits representation of B[7] in D1

add.w DO,D1 * Add the two 16 bits representations together
* The sum is stored in D1 (16 bits)

move.w D1,8(A0) * Store the 16 bits representation in B[4]

50f5 06/12/2017 01:54 PM

