
The ADD and SUBTRACT instructions

The ADD machine instruction

Fact:

The M68000 can perform the add operation in a data
register or in an address register

The CPU can only add values of the same representation
with each other

In other words:

The CPU can add 2 byte representations,
 or
The CPU can add 2 word (2 bytes)
representations, or
The CPU can add 2 long word (4 bytes)
representations,

ADD: add in a data register

Instruction to add in a data register:

 ADD.B Src, Dn * Add the 8 bits values: Dn = Dn + Src
 ADD.W Src, Dn * Add the 16 bits values: Dn = Dn + Src
 ADD.L Src, Dn * Add the 32 bits values: Dn = Dn + Src

Example 1: adding integer variables

 int x, y, z; (We assumed x,y,z have been defined)

 z = x + y;

 In assembler code:

 move.l x,D0 * Get 32 bits representation of x in D0

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

1 of 5 06/12/2017 01:54 PM

 move.l y,D1 * Get 32 bits representation of y in D1

 add.l D0,D1 * Add the two 32 bits representations together
 * The sum is stored in D1

 move.l D1,z * Store the 32 bits representation in z

Example 2: adding short variables

short x, y, z; (We assumed x,y,z have been defined)

 z = x + y;

 In assembler code:

 move.w x,D0 * Get 16 bits representation of x in D0
 move.w y,D1 * Get 16 bits representation of y in D1

 add.w D0,D1 * Add the two 16 bits representations together
 * The sum is stored in D1 (16 bits)

 move.w D1,z * Store the 16 bits representation in z

Example 3: adding integer array elements

 int B[10] (We assumed array B have been defined)

 B[4] = B[3] + B[7];

 In assembler code:

 movea.l #B,A0 * A0 = base address of array B

 move.l 12(A0),D0 * Get 32 bits representation of B[3] in D0
 move.l 28(A0),D1 * Get 32 bits representation of B[7] in D1

 add.l D0,D1 * Add the two 32 bits representations together
 * The sum is stored in D1

 move.l D1,16(A0) * Store the 32 bits representation in B[4]

Example 4: adding short array elements

short B[10; (We assumed array B have been defined)

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

2 of 5 06/12/2017 01:54 PM

 B[4] = B[3] + B[7];

 In assembler code:

 movea.l #B,A0 * A0 = base address of array B
 * An address is 32 bits, so we use .l !!!

 move.w 6(A0),D0 * Get 16 bits representation of B[3] in D0
 move.w 14(A0),D1 * Get 16 bits representation of B[7] in D1

 add.w D0,D1 * Add the two 16 bits representations together
 * The sum is stored in D1 (16 bits)

 move.w D1,8(A0) * Store the 16 bits representation in B[4]

ADDA: Adding in an address register

Fact:

When the destination of the add instruction is an
address register, the instruction nmemonic gets an a
appended to the tail

When the destination is an address register, you can only
use word size and long word size instructions

The instruction to add in an address register is:

 ADDA.W Src, An * Add the 16 bit value Src to the address reg An
 * I.e.: An = An + Src
 ADDA.L Sec, An * Add the 32 bit value Src to the address reg An
 * I.e.: An = An + Src

The SUB machine instruction

Subtract in a data register:

 SUB.B Src, Dn * Subtract the 8 bits values: Dn = Dn - Src
 SUB.W Src, Dn * Subtract the 16 bits values: Dn = Dn - Src

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

3 of 5 06/12/2017 01:54 PM

 SUB.L Src, Dn * Subtract the 32 bits values: Dn = Dn - Src

Note:

The subtract instruction is very similar to the add
instruction

You can use the above examples to learn about the
subtract instruction

The examples will work if you replace:

 ADD ---> SUB

Subtract in an address register:

 SUBA.W Src, An * Subtract the 16 bits values: An = An - Src
 SUBA.L Src, An * Subtract the 32 bits values: An = An - Src

Reminder: When to use data and address registers

Data registers:

When you perform calculation: always use data registers

Address registers:

When you access an array element or a field in a linked
list: use address registers

Example:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

4 of 5 06/12/2017 01:54 PM

short B[10; (We assumed array B have been defined)

 B[4] = B[3] + B[7];

 In assembler code:

 /* ===
 We want to access B[3]:
 ==> put base address in address register
 === */
 movea.l #B,A0 * A0 = base address of array B
 * An address is 32 bits, so we use .l !!!

 /* ===
 We want to compute B[3] + B[7]
 ==> put the values B[3] and B[7] in data register
 === */
 move.w 6(A0),D0 * Get 16 bits representation of B[3] in D0

 move.w 14(A0),D1 * Get 16 bits representation of B[7] in D1

 add.w D0,D1 * Add the two 16 bits representations together
 * The sum is stored in D1 (16 bits)

 move.w D1,8(A0) * Store the 16 bits representation in B[4]

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/...

5 of 5 06/12/2017 01:54 PM

