
M68000 (Address Register) Indirect with Index and Displacement Mode (a.k.a. the indexed mode)

Recall the syntax of the MOVE instruction:

 MOVE <EA>,<EA> * Copy Src to Destination

 ^ ^

 | |

 | +--- Destination

 +-------- Source operand

The indexed mode

Syntax to specified the indexed mode:

x(An, Dm) where An = A0, A1, A2, A3, A4, A5, A6, or A7

 Dm = D0, D1, D2, D3, D4, D5, D6, or D7

 x = a number between -128 and 127

 Examples:

 0(A1,D5)

 -8(A3,D7)

 4(A5,D4)

Semantics (meaning):

The operand specified by x(An, Dm) is located in memory at the location (address) given

by the value of the expression

 x + An (32 bits) + Dn (32 bits)

The address used by the indexed mode is equal to:

x + the 32 bit value in register An + the 32 bit value in register Dm.

Note:

The registers An and Dm used in the addressing mode will not be altered

The sum:

 x + An (32 bits) + Dn (32 bits)

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

1 of 5 6/1/17, 2:41 PM

is stored in a special Memory Address Register (MAR) and used to access the memory

Example:

 MOVEA.L #1000,A1 (set up address register)

 MOVE.L #4000,D4 (set up data register)

 MOVE.L #34, 4(A1, D4), D0 will store 34 (as binary number)

 in memory location at address 5004

 Beecause: A0 contains 1000, D0 = 4000,

 So: 1000 + 4000 + 4 = 5004

Didactical comment

Some demo programs may use:

 x(An, Dm.W)

Then I am using the 16 bit number inside the register Dm

(That's because in my demo program, I used a very small value that can be represented by 16 bits)

Most common application of the index mode

Most common situation to use the index mode:

Accessing an array variable such as: A[i], A[i+j], etc.

Example 1: accessing elements in an int array B

 High level programming language:

 int B[10];

 int k; // k has been initialized

 B[k] = 34;

 Assembler code:

MOVEA.L #B,A0 * A0 = base address of array B

MOVE.L k, D0 * D0 = k

 * k is the index in the array

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

2 of 5 6/1/17, 2:41 PM

 * You need to multiply by the size

* of each array element to get

* the offset !

MULS #4, D0 * This instruction multiply D0 by 4

 * and store the result in D0

 * --- Now D0 contains the offset of B[k]

* --- from the base address of array B

MOVE.L #34,0(A0,D0) * Move 34 into element B[k]

 How to defined the array B and k::

B: DS.L 10 An integer array: int B[10]

k: DS.L 1 An integer variable: int k

 (used as index into array A)

Example Program: (Demo above code)

Prog file: click here

How to run the program:

Right click on link(s) and save in a scratch directory

To compile: as255 indexed

To run, use: m68000

Example 2: accessing elements in a short array B

 High level programming language:

short B[10];

 int k; // k has been initialized

 B[k] = 34;

 Assembler code:

MOVEA.L #B,A0 * A0 = base address of array B

 * The address of any array type is 32 bits !!

MOVE.L k, D0 * D0 = k

 * k is the index in the array

 * You need to multiply by the size

* of each array element to get

* the offset !

MULS #2, D0 * D0 = 2*D0

 * (because a short occupies 2 bytes memory)

 * --- Now D0 contains the offset of B[k]

* --- from the base address of array B

MOVE.W #34,0(A0,D0) * Move 34 into element B[k]

 * We need to use .W because B[k] is a short

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

3 of 5 6/1/17, 2:41 PM

 How to defined the array B and k:

B: DS.W 10 A shirt array: short B[10]

k: DS.L 1 An integer variable: int k

 (used as index into array A)

Example Program: (Demo above code)

Prog file: click here

How to run the program:

Right click on link(s) and save in a scratch directory

To compile: as255 indexed1

To run, use: m68000

Quiz: why is the following program not correct ???

 High level programming language:

 short B[10];

 int k; // k has been initialized

 B[k] = 34;

 Assembler code:

MOVEA.L #B,A0 * A0 = base address of array B

 * The address of any array type is 32 bits !!

MOVE.L k, D0 * D0 = k

 * k is the index in the array

 * You need to multiply by the size

* of each array element to get

* the offset !

MULS #2, D0 * D0 = 2*D0

 * (because a short occupies 2 bytes memory)

 * --- Now D0 contains the offset of B[k]

* --- from the base address of array B

MOVE.L #34,0(A0,D0) * Error !!!

 * Can you predict what this instruction will do ???

Example Program: (Demo above code)

Prog file: click here

How to run the program:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

4 of 5 6/1/17, 2:41 PM

Right click on link(s) and save in a scratch directory

To compile: as255 indexed2

To run, use: m68000

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

5 of 5 6/1/17, 2:41 PM

