
Accessing arrays in a high level programming language explained

One of the most important data structures in high level programming languages is the array

A computer program needs information to do its work (solve some problem)

An array is one of the many data structures that Computer Science has developed to manage/organize information

The array is a static structure, i.e., the number of elements in an array is fixed at creation and cannot be changed (unless you

destroy the array and create a new one)

(In contrast, the linked list data structure is dynamic: the number of elements can change)

The Array data structure

All elements in an array is of the same type

Hence, each array element will use/occupy the same amount of memory

Array elements are stored cosecutively in the memory:

 +-----------------------+ <--------------- Compiler remembers the

 | Compiler remembers | starting location

 | the size of | First array variable

 | each array elem |

 +-----------------------+

 | |

 | | Second array variable

 | |

 +-----------------------+

 | |

 | | Third array variable

 | |

 +-----------------------+

When the (Java/C) compiler processes an array definition, it records:

The starting address of the first array element

The size (from the data type) of each aarray element

Base of an array

Base:

base of an array = the starting address of the first array element

Accessing acrray elements

To access an array variable (e.g., A[5] or A[i]), we have to compute the address of each array element

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

1 of 4 6/1/17, 2:40 PM

The address of an array element can be computed as follows:

 +-----------------------+ <--------------- Base Address

 | |

 | Array[0] | Address of Array[0] = Base address

 | |

 +-----------------------+ <--------- Base address + 1*size

 | |

 | Array[1] | Address of Array[1] = Base address + 1*size

 | |

 +-----------------------+ <--------- Base address + 1*size

 | |

 | Array[2] | Address of Array[2] = Base address + 2*size

 | |

 +-----------------------+

 +-----------------------+ <--------- Base address + k*size

 | |

 | Array[k] | Address of Array[k] = Base address + k*size

 | |

 +-----------------------+

Base address = The starting location (address) in the memory where the array is stored

Size = The number of bytes (size) of an array element

Example 1:

Suppose we define the following array:

 int B[10]; // Each int variable occupies 4 bytes !

Suppose the array is stored starting at memory address 7000

Then:

 Base Address of array B = 7000

 Size of array B element = 4 (because data type is int)

We can find the address of array variables B[1], B[5] and B[k] (for any value k) as follows:

 Address of B[1] = 7000 + 1*4

 Address of B[5] = 7000 + 5*4

 Address of B[k] = 7000 + k*4

Example 2:

Suppose we define the following array:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

2 of 4 6/1/17, 2:40 PM

short B[10]; // Each shortvariable occupies 2 bytes of memory !

Suppose the array is stored starting at memory address 7000

Then:

 Base Address of array B = 7000

 Size of array B element = 2 (because data type is short)

We can find the address of array variables B[1], B[5] and B[k] (for any value k) as follows:

 Address of B[1] = 7000 + 1*2

 Address of B[5] = 7000 + 5*2

 Address of B[k] = 7000 + k*2

Examples accesing arrays

Example 1:

 Variable definition:

 int ans;

 int MyArray[10]; // Array with 10 elements

 High level language statement:

 ans = MyArray[0];

 The compiler will translate this statement into

 the following assembelr instructions:

 movea.l #MyArray, A0

 move.l 0(A0), D0

 move.l D0, ans

 High level language statement:

 ans = MyArray[1];

 The compiler will translate this statement into

 the following assembelr instructions:

 movea.l #MyArray, A0

 move.l 4(A0), D0

 move.l D0, ans

 High level language statement:

 ans = MyArray[5];

 The compiler will translate this statement into

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

3 of 4 6/1/17, 2:40 PM

 the following assembelr instructions:

 movea.l #MyArray, A0

 move.l 20(A0), D0

 move.l D0, ans

Accessing array elements with a constant index (A[5]) - DEMO: click here

A more advanced example:

 Variable definition:

 int ans;

 int i; // Assume i has been initialized to some value

 int MyArray[10]; // Array with 10 elements

 High level language statement:

 ans = MyArray[i];

 The compiler will translate this statement into

 the following assembelr instructions:

 movea.l #MyArray, A0 * A0 = base address of array

 move.l i, D0 * D0 = index

muls #4, D0 * This computes: D0 = 4*D0

 * D0 now contains the offset !!!

adda.l D0, A0 * Add offset to the base address

 move.l 0(A0), D0 * Gets A[i] into D0

 move.l D0, ans * Store it in ans

Accessing array elements with a variable as index (A[i]) - DEMO: click here

Note:

Later we will learn about a more powerful addressing mode that will help us access MyArray[i] more

easier !!!

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

4 of 4 6/1/17, 2:40 PM

