
M68000 (Address Register) Indirect with Displacement Mode

Recall the context that the address mode is used within the MOVE instruction:

 MOVE <EA>,<EA>

 ^ ^

 | |

 | +--- Source operand 2 and Destination

 +-------- Source operand 1

Indirect mode (with displacement)

Syntax to specify the (address register) indirect mode (with displacement):

m(An) where n = 0, 1, 2, 3, 4, 5, 6, or 7

 m = a number between -32768 and 32767

 Examples:

 4(A1)

 -8(A1)

Semantics (meaning):

The operand specified by m(An) is located in memory at the memory address

given by:

 m + An (32 bits)

Note:

0(An) can be shorted to: (An)

Examples:

 MOVEA.L #1000,A0 (set up address register)

 MOVE.L 4(A0), D0 will move a long word from

memory location at address 1004

 (because A0 contains 1000,

so 1000 + 4 = 1004) into D0

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

1 of 3 6/1/17, 2:39 PM

 MOVEA.L #1000,A0 (set up address register)

 MOVE.L -4(A0), D0 will move a long word from

memory location at address 996

into D0

 MOVEA.L #5678,A0 (set up address register)

 MOVE.L 10(A0), D0 will move a long word from

memory location at address 5688

into D0

Advanced examples:

 (1a) Copy the value of a byte array element A[0] into register D0

 A: DS.B 10 A byte array: int A[10]

 MOVEA.L #A,A0 A0 = base address of array A

MOVE.B 0(A0), D0 Move element A[0] into reg. D0

 (1b) Copy the value of a short array element A[0] into register D0

 A: DS.W 10 A short array: int A[10]

 MOVEA.L #A,A0 A0 = base address of array A

MOVE.W 0(A0), D0 Move element A[0] into reg. D0

 (each element in a short array is 2 bytes long)

 (1c) Copy the value of an int array element A[0] into register D0

 A: DS.L 10 An integer array: int A[10]

 MOVEA.L #A,A0 A0 = base address of array A

MOVE.L 0(A0), D0 Move element A[0] into reg. D0

 (each element in a short array is 4 bytes long)

 (2a) Copy the value of a byte array element A[3] into register D0

 A: DS.B 10 A byte array: int A[10]

 MOVEA.L #A,A0 A0 = base address of array A

MOVE.B 3(A0), D0 Move element A[3] into reg. D0

 (2b) Copy the value of a short array element A[3] into register D0

 A: DS.W 10 A short array: int A[10]

 MOVEA.L #A,A0 A0 = base address of array A

MOVE.W 6(A0), D0 Move element A[3] into reg. D0

 (each element in a short array is 2 bytes long)

 (2c) Copy the value of an int array element A[3] into register D0

 A: DS.L 10 An integer array: int A[10]

 MOVEA.L #A,A0 A0 = base address of array A

MOVE.L 12(A0), D0 Move element A[3] into reg. D0

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

2 of 3 6/1/17, 2:39 PM

 (each element in a short array is 4 bytes long)

 (3) Suppose we define the class:

 class MyClass

{

 int x;

 int y;

 short z;

}

 And an object of the type MyClass:

MyClass A;

 Then the object A is defined in assembler using:

A: DS.B 10 * because object of MyClass has 2 int's

 * 1 short variables, for a total of 10 bytes

 And the following statements have the following

 equivalent in M68000 assembler instructions:

 A.x = 4000; -> MOVEA.L #A,A0

 MOVE.L #4000,0(A0) because x has offset 0

 A.y = 8100; -> MOVEA.L #A,A0

 MOVE.L #8100,4(A0) because y has offset 4

 A.z = 123; -> MOVEA.L #A,A0

 MOVE.W #123,8(A0) because z has offset 8

 Make sure you use the

 right operand size !

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

3 of 3 6/1/17, 2:39 PM

