
M68000 Direct Addressing Mode

Operand specified with the direct addressing mode is the value contained in a location given "directly"

Two direct modes:

Register direct: operand is in register (whose name is given directly)

Memory direct: operand is in memory, whose address is iven directly)

Recall the context that the address mode is used within the MOVE instruction:

 MOVE <EA>,<EA>

 ^ ^

 | |

 | +--- Source operand 2 and Destination

 +-------- Source operand 1

Syntax to specify the direct mode:

 Dn - Data register direct (n = 0, 1, 2, 3, 4, 5, 6, 7)

 An - Addr register direct (n = 0, 1, 2, 3, 4, 5, 6, 7)

 N - Memory direct: (N = a constant number (= address in memory))

NOTE: labels can be (and are often) used instead of a constant number, because labels are

always equated to a constant number by the assembler !

Semantics (meaning):

Dn: The operand is located in the data register Dn

An: The operand is located in the address register An

N: The operand is located in the memory at address N

NOTE: the size of the operand is given in the instruction !!!

Examples:

 (1) MOVE.B D1, D0 move byte from D1 into D0

 (2) MOVE.B 0, D0 move byte at memory address 0 into D0

 (3) MOVE.W 0, D0 move word (short) at memory address 0 into D0

 (4) MOVE.L 100, D0 move long word (int) at memory addr 100 into D0

Advanced example:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

1 of 5 6/1/17, 2:38 PM

 MOVE.L A,D0 move the first element of array A (A[0])

 ... into D0

 ...

A: DS.L 10 int A[10]

Contrast the result with the immediate mode:

 MOVE.L #A,D0 move the address of the array A

 (which is equal to the address of the first

 element of A (A[0]) in D0

 ...

 ...

A: DS.L 10 int A[10]

Here is a demo to illustrate the difference between the direct mode and the immediate mode:

DEMO: click here

Difference between "MOVE.L #A,D0" and "MOVE.L A,D0" in assembler code

 000000 203C MOVE.L #A,D0

0000

 000C

 000006 2039 MOVE.L A,D0

0000

 000C

00000C A: DS.L 1

 000010 END

In both cases, the label A is translated into the constant 0000 000C

The different is in the instruction code (203C vs. 2039)!

In the first case, the instruction code 203C tells the CPU to use 0000 000C (hex)

as the operand (a constant number)

In the second case, the instruction code 2039 tells the CPU to get the operand in

memory at address 0000 000C (hex)

Direct mode using memory operands

There are two ways to store a serie of bytes in memory:

Big endian: stores the serie of bytes from left to right

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

2 of 5 6/1/17, 2:38 PM

Example:

11110000 00001111 10101010 01010101

 Stored in memory as:

 +-----------+

 | |

 +-----------+

 | 11110000 |

 +-----------+

 | 00001111 |

 +-----------+

 | 10101010 |

 +-----------+

 | 01010101 |

 +-----------+

 | |

 +-----------+

 | |

Little endian: stores the serie of bytes from right to left

Example:

11110000 00001111 10101010 01010101

 Stored in memory as:

 +-----------+

 | |

 +-----------+

 | 01010101 |

 +-----------+

 | 10101010 |

 +-----------+

 | 00001111 |

 +-----------+

 | 11110000 |

 +-----------+

 | |

 +-----------+

 | |

Only Intel CPU (AMD included) used little endian

M68000 uses big endian

When using memory operands, be careful that you use the correct size or you may retrieve the

wrong value

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

3 of 5 6/1/17, 2:38 PM

Example:

 move.l #-5, d0

 move.l d0, 5672

 move.l 5672, d1 d1 = -5

 move.w 5672, d2 word operand in d2 = -1 !!!

 move.b 5672, d3 byte operand in d3 = -1 !!!

Example Program: (Demo above code)

Prog file: click here

Now you should understand that the following high level programming language construct

 (static) int A, B, C;

C = A + B;

is equivalent the following in M68000 assembler language:

 MOVE.L A,D0 Get value in memory location A into D0

 MOVE.L B,D1 Get value in memory location B into D1

 ADD.L D0,D1 Now D1 has the sum

MOVE.L D1,C Put the sum (D1) in memory location C

 ...

 ...

 A: DS.L 1

 B: DS.L 1

 C: DS.L 1

NOTE: we put the variables at the END to prevent them from being "fetched and executed as

instructions"

Repeated Warning:

Make sure you use the proper size especially with memory variables:

 move.l A, d0 is correct

 ...

 A: dc.l -4

But don't be surpised to be the wrong value if you use a different operand size:

 move.w A, d0 is INCORRECT !!!

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

4 of 5 6/1/17, 2:38 PM

 ...

 A: dc.l -4

Here is a program to show you what was happening: DEMO click here

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

5 of 5 6/1/17, 2:38 PM

