CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

M68000 Direct Addressing Mode

e Operand specified with the direct addressing mode is the value contained in a location given "directly"
e Two direct modes:

o Register direct: operand is in register (whose name is given directly)
o Memory direct: operand is in memory, whose address is iven directly)

e Recall the context that the address mode is used within the MOVE instruction:

MOVE <EA>,<EA>

A A

| I
| +--- Source operand 2 and Destination
+-——————- Source operand 1

e Syntax to specify the direct mode:

Dn - Data register direct (n =0, 1, 2, 3, 4, 5, 6, 7)
An - Addr register direct (n =0, 1, 2, 3, 4, 5, 6, 7)
N - Memory direct: (N = a constant number (= address in memory))

NOTE: labels can be (and are often) used instead of a constant number, because labels are
always equated to a constant number by the assembler !

e Semantics (meaning):

m pn: The operand is located in the data register Dn
® an: The operand is located in the address register An
m N: The operand is located in the memory at address N

o NOTE: the size of the operand is given in the instruction !!!

e Examples:

(1) MOVE.B D1, DO move byte from D1 into DO

(2) MOVE.B 0, DO move byte at memory address 0 into DO

(3) MOVE.W 0, DO move word (short) at memory address 0 into DO
(4) MOVE.L 100, DO move long word (int) at memory addr 100 into DO

e Advanced example:

1of5 6/1/17,2:38 PM



CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

MOVE.L A,DO move the first element of array A (A[O0])
into DO
A: DS.L 10 int A[10]

Contrast the result with the immediate mode:

MOVE.L #A,DO move the address of the array A
(which is equal to the address of the first
element of A (A[0]) in DO

A: DS.L 10 int A[10]

e Here is a demo to illustrate the difference between the direct mode and the immediate mode:

o DEMO: click here

e Difference between "MOVE.L #A,D0" and "MOVE.L A,D0" in assembler code

000000 203C MOVE.L #A,DO
0000
oooc
000006 2039 MOVE.L A, DO
0000
oooc
00000C A: DS.L 1
000010 END

o In both cases, the label A is translated into the constant 0000 000C

o The different is in the instruction code (203C vs. 2039)!

m In the first case, the instruction code 203C tells the CPU to use 0000 000C (hex)
as the operand (a constant number)

m In the second case, the instruction code 2039 tells the CPU to get the operand in
memory at address 0000 000C (hex)

¢ Direct mode using memory operands

o There are two ways to store a serie of bytes in memory:

® Big endian: stores the serie of bytes from left to right

2 of 5 6/1/17,2:38 PM



CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/ ...

Example:

11110000 00001111 10101010 01010101

Stored in memory as:

m Little endian: stores the serie of bytes from right to left

Example:

11110000 00001111 10101010 01010101

Stored in memory as:

0 Only Intel CPU (AMD included) used little endian

M68000 uses big endian

o When using memory operands, be careful that you use the correct size or you may retrieve the
wrong value

3 of 5 6/1/17, 2:38 PM



CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

Example:
move.l #-5, dO
move.l dO, 5672
move.l 5672, dl dl = -5
move.w 5672, d2 word operand in d2 = -1 !!!
move.b 5672, d3 byte operand in d3 = -1 !!!

o Example Program: (Demo above code) Exﬂmple

m Prog file: click here

e Now you should understand that the following high level programming language construct
(static) int A, B, C;
C =12+ B;

is equivalent the following in M68000 assembler language:

MOVE.L A,DO Get value in memory location A into DO
MOVE.L B,D1 Get value in memory location B into D1
ADD.L DO,D1 Now D1 has the sum
MOVE.L D1,C Put the sum (D1) in memory location C
A: DS.L 1
B: DS.L 1
C: DS.L 1

NOTE: we put the variables at the END to prevent them from being "fetched and executed as
instructions"

e Repeated Warning:

o Make sure you use the proper size especially with memory variables:

move.l A, dO is correct

A: dc.l1 -4

But don't be surpised to be the wrong value if you use a different operand size:

move.w A, dO is INCORRECT !!!

4 of 5

6/1/17,2:38 PM



CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

A: dc.l1 -4

o Here is a program to show you what was happening: DEMO click here

5o0f5 6/1/17,2:38 PM



