
M68000 Immediate Addressing Mode

Operand specified with the immediate addressing mode is a constant operand

Recall the context that the address mode is used within the MOVE instruction:

 MOVE <EA>,<EA>

 ^ ^

 | |

 | +--- Source operand 2 and Destination

 +-------- Source operand 1

Syntax to specify the immediate addressing mode:

 #N (N = constant number)

Semantics (meaning):

The operand is the constant number N

Examples:

 (1) MOVE.B #0, D0 move byte (8 bits) constant 0 into D0

 (2) MOVE.W #0, D0 move word (16 bits) constant 0 into D0

 (3) MOVE.L #100, D0 move long word constant 100 into D0

NOTE: you cannot use immediate mode in second operand (destination), that should be obvious...

You cannot change a constant

Constants in other number base systems:

$-prefix indicates a hexadecimal constant, e.g.: $FA1F

@-prefix indicates a octal constant, e.g.: @70167

%-prefix indicates a binary constant, e.g.: %11011011

Examples:

 MOVE.B #%10101010, D0 move byte binary number 10101010 into D0

 MOVE.W #$FFFF, D0 move word constant FFFF (hex) into D0

Advanced examples:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

1 of 3 6/1/17, 2:37 PM

 (1) MAX: EQU 100

 ...

 ...

 MOVE.L #MAX,D0 move 100 into reg. D0

You must remember that every symbolic name will be replaced by its corresponding number.

MAX is defined to be equal to 100

So, the MOVE instruction will become (after replacing MAX by 100):

 MOVE.L #MAX,D0 --> MOVE.L #100,D0

Result: move 100 into reg. D0

 (2) MOVE.L #A,D0 move the address of the variable A in D0

 ...

 ...

 A: DS.L 10

You must remember that:

A: DS.L 10

equates the symbolic name A to the address of the memory location where the (array) variable is

defined.

So the symbolic name A will be replaced by this address

Example Program: (Demo above code)

Prog file: click here

The magic of symbolic names revealed:

006000 org $6000

 000007 MAX: EQU 7

 006000 203C move.l #-1, d0

FFFF

 FFFF FFFFFFFF = -1 (in 32 bits)

 006006 303C move.w #1, d0

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

2 of 3 6/1/17, 2:37 PM

0001 0001 = 1 (in 16 bits)

 00600A 103C move.b #MAX, d0

0007 MAX is replaced by 7 !

 00600E 207C move.l #A, a0

0000

 601A A is replaced by 0000601A ! (addr is 32 bits)

 006014 227C move.l #B, a1

0000

 6042 B is replaced by 00006042 !

00601A A: ds.l 10 <---- array of 10 int at A

006042 B: ds.l 10 <---- array of 10 int at B

 00606A end

You can see that the symbolic name A is equated to the hexadecimal number 00601A

The "move.l #A, a0" replaces A by 0000601A

You can also see that the symbolic name B is equated to the hexadecimal number 006042

The "move.l #B, a1" replaces B by 00006042

So:

 YOU write Assembler knows that: Final assembler instr:

 ------------------ ----------------------- ------------------------

 move.b #MAX,d0 MAX == 7 (dec) move.b #7,d0

 move.l #A,d0 A == 601A(hex) move.l #$601A,d0

 move.l #B,d0 A == 6042(hex) move.l #$6042,d0

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

3 of 3 6/1/17, 2:37 PM

