
A taste of assembler programming

A single assembler instructions will accomplish a very small amount of work.

Each program statement in a high level language will typically require multiple assembler instructions

to accomplish/complete.

Example:

 High level language statement:

 C = A + B;

 Equivalent M68000 instructions:

 MOVE.L A, D0 Get integer from memory location A into D0

 MOVE.L B, D1 Get integer from memory location B into D1

 ADD.L D0,D1 Add integers in D0 and D1

 MOVE.L D1,C Store integer in D1 to memory location C

You can see how memory locations are reserved for variables by the assembler when you assemble

this program and look at the listing file a.lst: click here

a.lst:

 Address Content Assembler source Comment

 ======= ======= ================ ================================

 000000 2039 move.l A, d0 Get variable A into register d0

0000

 0016

 000006 2239 move.l B, d1 Get variable B into register d1

0000

 001A

 00000C D081 add.l d1, d0 Add them, result is in d0

 00000E 23C0 move.l d0, C Store result in variable C

0000

 001E

 000014 4E71 nop

000016 0000 A: dc.l 4

 0004

00001A 0000 B: dc.l 15

 000F

00001E ???? C: ds.l 1

 000022 end

 SYMBOL TABLE

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

1 of 4 6/1/17, 2:37 PM

A 000016 B 00001A C 00001E

Look carefully in the above listing for:

Label A is associated with memory location 000016 (see content of the Symbol Table)

The instruction MOVE.L A,D0 is translated into an instruction that uses the memory at

address 00000016, as given in the above listing (see instruction at the address 000000)

Thus:

the assembler will replace all symbolic names used in the program by

the associated address !!!

The same is true for label B and C (I highlighted C in red)

Lesson from this small example:

A statement in a high level language expresses a unambigous result

C = A + B means:

store the sum of variables A and B in variable C

Assembler instructions are used to achieve this result

We must first determine the exact sequence of operations that achieve the desired result !

Steps to achieve "store the sum of variables A and B in variable C":

get value in variable A

get value in variable B

add them

put the result in variable C

The most difficult part in assembler programming is getting the value from variables

It is quite easy to get values from simple variables, like

 int A;

It is quite complex to get values from more complex data structures, like:

An array

 int A[100], i, j;

 A[i]

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

2 of 4 6/1/17, 2:37 PM

 A[7*i + 9*j]

Array of arrays

 int A[100], B[10], C[10], i;

 A[B[i]]

 A[B[C[i]]]

An linked list

 class List

 {

 int value;

 List next;

 };

 List head;

 head.next.next.value

Experience in computer building led to the understanding of a number of address modes that are

most helpful to aid high level programming languages to get operands from the registers (in the

CPU) and from memory.

Addressing modes:

Immediate mode

allows the computer to get a constant as operands

Direct mode

allows the computer to get operands that are simple variables stored in a register or in

memory

Indirect (without displacement)

allows the computer to get to objects through an address/reference

allows the computer to get to static simple variable

Indirect with displacement

allows the computer to get to local variables

allows the computer to get to array of simple elements

allows the computer to get to members in an object

allows the computer to get to linked lists

Indirect with index and displacement

allows the computer to get to of arrays of complex elements

Only the first 3 addressing modes are necessary (immediate, direct and indirect without displacement)

But if only these 3 addressing modes are available, you will have to compute the address "manually"

using assembler instructions (ADD and MULT), which can be quite clumbersome.

Some computers (mainly RISC - Reduced Instruction Set Computers) deliberately omit the "Indirect

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

3 of 4 6/1/17, 2:37 PM

with index and displacement" mode because programs rarely need to access arrays with complexe

elements. The CPU designers use the "free up" space on the CPU (which would be needed to execute

the "Indirect with index and displacement" mode) for other more useful functions.

Each computer has its own way of expressing the addressing modes.

M68000 has all the above addressing modes....

SPARC does not have "Indirect with index and displacement" only "Indirect with index"

We will now learn to express the addressing mode in M68000 and also explain what each addressing mode

means.

Address modes are used in all assembler instructions.

To keep the focus on addressing mode (and not on the instructions), I will mainly use the move instruction

to illustrate the concept of addressing mode. various

Addressing mode is the first of two hairy topics in this course (the other is recursion).

Make sure you understand addressing modes VERY WELL or the rest of your CS255 experience will be

misserable....

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

4 of 4 6/1/17, 2:37 PM

