
Intro to M68000 Assembler Programming....

Assembler Instruction Format:

    [Label]   Opcode Operand(s)   [Comment]

Example:

    Loop:   move.b d0,d1     The rest of line is comment

Effect of processing an assembler instruction:

The assembler will replace the mnemonic Opcode Operand(s) with:

the corresponding machine instruction code (which is a binary

number !!!)

The machine instruction code will be stored at the next memory location in the

assembly processs

If a label is included on the assembler code line, then:

the symbolic name label is set equal to the address of the instruction

in memory

NOTE:

Never start writing the assembler instructions at column 1 !!!!!

Because the assembler instructions can be mistaken as a label !!!

Comment line:

If column 1 contains the character "*" (star), then the entire line is a comment line

Example:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

1 of 5 6/1/17, 2:28 PM



    123456789 <----------------- column number

    * This whole line is a comment

     * This line will cause a problem - because * did not start on column 1

The effect of labeling assembling instructions:

It is crucial to know that when you assign a label to an assembler instruction, the symbolic name

of the label will be equated to the memory location at which the assembler instruction is stored.

(Because we will be labeling instructions like a madman when we write programs in

assembler...)

Here is an assembler program with 4 labels (L1, L2, L3 and L4) attached to instructions along

with 3 labels (A, B, and C) attached to ds directives: click here

Assemble it and look at the assembler listing file a.lst

You should see the following:

 1  000000       * Demonstrate the effect of DS directive

 2  000000       * Assemble with: as255 instr

 3  000000       * Look at the output file a.lst

 4  001000               ORG $1000

 5  001000 1200          move.b d0, d1

 6  001002 1200  L1:     move.b d0, d1

 7  001004 1200          move.b d0, d1

 8  001006       A:      ds.b 10

 9  001010 1200          move.b d0, d1

10  001012 1200  L2:     move.b d0, d1

11  001014 1200          move.b d0, d1

12  001016       B:      ds.w 10

13  00102A 1200          move.b d0, d1

14  00102C 1200  L3:     move.b d0, d1

15  00102E 1200          move.b d0, d1

16  001030       C:      ds.l 10

17  001058 1200          move.b d0, d1

18  00105A 1200  L4:     move.b d0, d1

19  00105C 1200          move.b d0, d1

20  00105E               end

                             SYMBOL TABLE

                             ************

A    001006            B     001016            C     001030

L1   001002            L2    001012            L3    00102C

L4   00105A

Notice that:

The symbol L1 is equal to the address value (number) 001002(16)

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

2 of 5 6/1/17, 2:28 PM



In fact:

Every label will be equated to some numeric value when the

assembler has processed the assembler program !!!

This will be important when we use labels to access variable and in the branch

instruction:

The labels will be replaced by a numeric value !!!

Overview M68000 assembler instructions

M68000 instructions can be subdivided into 5 broad categories:

Data movement instructions (data copy is a better name)

arithmetic operations (add, sub, mult, div)

logic operations (and, or, not, shift, rotate)

branch and jump instructions (include subroutine call & return)

system control instructions - will not be covered here

M68000 instructions can have:

0, 1, or 2 operands

In binary operations (instructions with 2 operands), the second operand doubles as destination

 ADD D0, D1       - operands are D0 and D1 (D0 + D1)

  - The second operand doubles as destination

    i.e., the result of the operation is stored 

    in D1

Categories of M68000 instructions

Data movement (MOVE)

Arithmetic (ADD, SUB, MULS, DIVS)

Logic (AND, OR, NOT)

Branching (BRA, Bcc, BSR, JSR, RTS)

Controlling the CPU (not covered)

Mapping of High Level Language constructs in M68000 Assembler

Program in High Level Language is first translated into assembler and then into computer code !

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

3 of 5 6/1/17, 2:28 PM



So there is always a way to express any construct found in any High Level Language in

assembler language

Variable definitions

DS and DC directives

Constant definitions

EQU directive

Statements

Assignment statement

MOVE

ADD, SUB, MULS, DIVS (to evaluate the expression)

AND, OR, NOT

Conditional statements (if, if-else)

BRA

Bcc

Loop statements (while, for, do-while)

BRA

Bcc

Subroutine call

BSR, JSR

RTS

Handout two sheets of papers describing M68000 instructions....

M68000 instruction nmenomic codes and their meaning: click here

M68000 instruction nmenomic codes and the allowed addressing modes: click here

How to read allowed effective addresses:

     Instruction     | Size | #  | Dn | An | ...

   ------------------+------+----+----+----+-----------

      .....          |      |    |    |    |

     move <ea>,<ea>  | BWL  | *X | *  | *X |

     Size = BWL         instruction can use sizes B, W and L

So you may use:

move.b .. , ..

move.w .. , ..

move.l .. , ..

     The other columns list the "addressing modes"

         #    represents a constant as operand

 Dn   represents a data register as operand

 An   represents an address register as operand

 ...

     <ea> is the "effective address"

     The marking in the columns give you information about

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

4 of 5 6/1/17, 2:28 PM



     whether certain type of operands may be used for <ea>

       *  means allowed, unless restricted by other comments

       X  means not allowed in destination

     So:

       *  under Dn means: data registers can be used both in source

   and in destination 

       *X under # means:  constants can be used in source 

  but not in destination 

  (make sense, you can't change a value

  of a constant...)

       *X under An means: address registers can be used in source 

  but not in destination 

  (recall that we must use movea for address

  registers !)

          i.e.: movea ..., An

I found an online M68000 instruction sheet that is not so descriptive, but at least it's in electronic form

that you can do a "search" on: click here

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

5 of 5 6/1/17, 2:28 PM


