
M68000 Assembler Directives

M68000 Assembler Directives:

ORG (Organize)

EQU (Equal)

DS (Define Storage)

DC (Define Constant) - Note: a misnomer

EVEN

END (Exit)

ORG (Organize)

Syntax:

ORG address

Effect: tell assembler to translate the next assembler instruction at memory location address

The use of ORG is obsoleted by the use of the "virtual memory" technique that allow multiple programs to

start at address 0

(Virtual memory will be discussed in CS355)

EQU (Equal)

Syntax:

Label EQU constant

Effect: tell assembler to set the symbolic name label equal to the value of the constant constant

Label

Consists of letter, digits and _ (underscore)

Must begin with a letter

First character of Label must be at column 1 or Label must be followed by colon (:)

Examples:

 123456789 (<---- column position in file)

 MAX EQU 100 - good EQU directive

 MAX: EQU 100 - good EQU directive

 MAX: EQU 100 - good EQU directive

 MAX EQU 100 - BAD EQU directive

Any one of the good EQU directive above defines the symbolic name MAX to be equal to 100. This capability

to define symbolic constant can also be found in high level languages, like:

 JAVA: final int MAX = 100;

 C: #define MAX 100

The assembler (is a computer program) has a data structure named symbol table used to map symbolic

names to their defined values.

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

1 of 6 6/1/17, 2:28 PM

Example, get this program, compile it and look at the output listing file a.lst: click here

The output listing looks like this:

 MAX EQU 100

 MIN EQU 10

 SYMBOL TABLE

 MAX = 000064 MIN = 00000A (Hint: hexadecimal numbers)

The output listing indicate that the assembler has recorded the following 2 symbolic constant (that the

assembler program can use):

MAX which is equal to 64(16) or 6x16 + 4 = 100(10)

MIN which is equal to A(16) or 10(10)

You can define constant in other number systems as follows:

$-prefix indicates a hexadecimal constant, e.g.: $FA1F

@-prefix indicates a octal constant, e.g.: @70167

%-prefix indicates a binary constant, e.g.: %11011011

DS (Define Storage)

Syntax:

 (1) Label DS.B n - reserves n bytes of memory space

 (2) Label DS.W n - reserves n words of memory space

 (3) Label DS.L n - reserves n long words of memory space

Effect: tell assembler to

reserve space to store n bytes, words or long words (depending on the size following the DS directive

set the symbolic name Label equal (like EQU) to the address of the first memory location of the

reserved space

The DS directive is used to define uninitialized static variables

(static variables have lifetime from start of program till end)

Check out the effect of DS in this demo program: click here .

Assemble the program with "as255 ds" and take a look at the listing file "a.lst":

a.lst:

 1 000000 * Demonstrate the effect of DS directive

 2 000000 * Assemble with: as255 ds

 3 000000 * Look at the output file a.lst

 4 001000 ORG $1000

 5 001000 1200 move.b d0, d1 (1200 (hex) is the code

 6 001002 1200 move.b d0, d1 for "move.b d0, d1" !)

 7 001004 A: ds.b 10

 8 00100E 1200 move.b d0, d1

 9 001010 1200 move.b d0, d1

10 001012 B: ds.w 10

11 001026 1200 move.b d0, d1

12 001028 1200 move.b d0, d1

13 00102A C: ds.l 10

14 001052 1200 move.b d0, d1

15 001054 1200 move.b d0, d1

16 001056 end

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

2 of 6 6/1/17, 2:28 PM

 SYMBOL TABLE

A 001004 B 001012 C 00102A

Notice that: (use calctool !)

 100E(hex) - 1004(hex) = 10(decimal) 10 bytes reserved at A

 1026(hex) - 1012(hex) = 20(decimal) 20 bytes reserved at B

 1052(hex) - 102A(hex) = 40(decimal) 40 bytes reserved at C

Examples of usage:

 Construct in Java/C/C++ Equivalent in M68000

 ----------------------- --------------------

 int i; i: DS.L 1

 short s; s: DS.W 1

 byte b; b: DS.B 1

 Construct in C/C++ Equivalent in M68000

 ----------------------- --------------------

 int A[10]; A: DS.L 10

 short B[100]; B: DS.W 100

 Construct in C/C++ Equivalent in M68000

 ----------------------- --------------------

 class MyClass Remembers:

 { 1. a MyClass object occupies 10 bytes

 int x; 2. x's offset is 0

 int y; 3. y's offset is 4

 short z; 4. z's offset is 8

 };

 MyClass A; A: DS.B 10

 Note: A marks the start of the memory location for the object

 You need to add the offset to A to get to the members

 x, y and z. That's why assembler remembers the offset

 for each member variable in an object

DC (Define Constant)

Syntax:

 (1) Label DC.B <list of constant values (byte size)>

 (2) Label DC.W <list of constant values (word size)>

 (3) Label DC.L <list of constant values (long word size)>

Effect: tell assembler to

reserve space to store the list of constant values in memory,

initialize the reserved space with the specified values

set the symbolic name Label equal (like EQU) to the address of the first memory location of the

reserved space

The DC directive is used to define initialized static variables

Important program note:

The assembler on the Linux machines (in the lab) do not allow spaces between the values

in the list of constants

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

3 of 6 6/1/17, 2:28 PM

Example:

 A: dc.b 10, 1, 2, 3 BAD !!!

You will get warning:

 filename.s:xx: Warning: zero assumed for missing expression

Note:

My teaching notes on this website are based on the assembler on Solaris that does allow a

space between constants.

So you may see some space in my webpages

But my test programs that run on a lab machine will not have the space (I

removed them).

Check out the effect of DS in this demo program: click here .

Assemble the program with "as255 dc" and take a look at the listing file "a.lst":

a.lst:

 1 000000 * Demonstrate the effect of DC directive

 2 000000 * Assemble with: as255 dc

 3 000000 * Look at the output file a.lst

 4 001000 ORG $1000

 5 001000 1200 move.b d0, d1

 6 001002 1200 move.b d0, d1

 7 001004 0A A: dc.b 10, 1, 2, 3

 01

 02

 03

 8 001008 1200 move.b d0, d1

 9 00100A 1200 move.b d0, d1

10 00100C 000A B: dc.w 10, 1, 2, 3

 0001

 0002

 0003

11 001014 1200 move.b d0, d1

12 001016 1200 move.b d0, d1

13 001018 0000 C: dc.l 10, 1, 2, 3

 000A

 0000

 0001

 0000

 0002

 0000

 0003

14 001028 1200 move.b d0, d1

15 00102A 1200 move.b d0, d1

16 00102C end

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

4 of 6 6/1/17, 2:28 PM

 SYMBOL TABLE

A 001004 B 00100C C 001018

Notice that: (use calctool !)

 1008(hex) - 1004(hex) = 4(decimal) 4 bytes reserved at A

 1014(hex) - 100C(hex) = 8(decimal) 8 bytes reserved at B

 1028(hex) - 1018(hex) = 16(decimal) 16 bytes reserved at C

EVEN

EVEN tells the assembler to skip forward until it reaches an even valued address

This directive is needed due to the alignment requirement imposed by the computer

manufacturer on how certain types of variables are stored

Alignment requirements in the M68000:

A short typed variable (= 2 bytes in length) must be located at an even address

A int typed variable (= 4 bytes in length) must be located at an even address

(A byte typed variable (= 1 byte in length) must be located anywhere in memory)

Using the even directive:

Problem:

Define a int typed variable named x

This is not completely correct:

x: ds.l 1 * reserve 4 bytes for the int variable

Reason:

The variable x may not be located on an even valued address

(Remember the alignment requirement of int typed variables (see above))

Correct solution:

even * Tell assembler to skip to an even address

x: ds.l 1 * Now we are sure that x is stored at an even address

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

5 of 6 6/1/17, 2:28 PM

END

End the assembling process

Any text following the end directive will be ignored...

Final comment

Make sure that you:

Do not put any directive at the start of a line

Because the assembler will consider the directive as a label !!!

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000/...

6 of 6 6/1/17, 2:28 PM

