CS255 Syllabus

1of3

http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

Address Register Operands

e Operands in address registers

o Fact:

m Address registers are mainly used to store address values needed to access variables in memory

= We will not use an address register to store intermediate results of computations

m Therefore, [will present a set of simplified rules on using address registers

o Rules for using address registers

= You cannot use the .b mode (byte size operand) with address registers

Example:

move.b #-1, a0 not allowed
add.b #-1, a0 not allowed
add.b do, a0 not allowed

= When you store a value into an address register, the value is always stored in 32 bits representation

(That is because an address in M68000 is always represented by 32 bit)

Example:

movea.w #-1, a0 ; stores 11111111 1111111 11111111 11111111 in a0

movea.l #-1, a0 ; stores 11111111 1111111 11111111 11111111 in a0

Note: the difference between these 2 instructions is the encoding.

The first instruction uses 6 bytes, the second uses 10 bytes. (See a.lst in demo)

m The status flags (N,Z,V,C) are not updated when an operation updates an address register

(That is because the operation is not consider a data computational operation)

o Example word size operation with address register as destination

Before operation:

o EEEEEE PR dommm - R s +

DO = | 00000000 | 00001001 | 10010010 | 10111000 |

Fommm e PP dommm - e s +

R E dommmm - dommmm +

A0 = | 00000000 | 00000000 | 00000000 | 00000000 |

Fomm o - Fom—mm - +
Operation: MOVE.W DO, A0 (A0 is the destination)

6/1/17,2:26 PM

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

After operation:

Fmmmm Fmmm Fomm Hmmmmm +
DO = | 00000000 | 00001001 | 10010010 | 10111000 |
Fommm Fommm Fomm o Hmmmmm +
e LR E e - pommm - mmmmm - +
A0 = | 11111111 | 11111111 | 10010010 | 10111000 |
Fommm - pomm - Hmmmmmm o Fm—mmm - +

Flags in PSR are unchanged

Note:

= Because the 16 bit representation indicates that the value is negative, it is automatically converted to a 32 bit
representation for a negative value by prepending 1 bits before the representation.

o Example long word size operation with address register as destination

Before operation:

o - - $ommm - +
DO = | 00000000 | 00001001 | 10010010 | 10111000 |
o EEEEEE PR dommm - R ettt +
Fommm e EREEEE PR e LR e e +
A0 = | 00000000 | 00000001 | 00000000 | 00000000 |
R E dommmm - dommmm +
Operation: MOVE.L DO, AO
After operation:
et Fomm oo Fomm e Fommm +
DO = | 00000000 | 00001001 | 10010010 | 10111000 |
o o $ommm - Fommm - +
o EEEEEE PR e R s +
A0 = | 00000000 | 00001001 | 10010010 | 10111000 |
Bttt PP dommm - R ettt +

Flags in PSR are unchanged

o DEMO: click here

o Remember that:

m Any byte size operation with address register as destination are NOT allowed !!!

Examples:

MOVEA.B #3, AO (MOVEA = move to Address reg) - not allowed

ADDA.B #3, A0 (ADDA

Add to Address register) - not allowed

SUBA.B #3, A0 (SUBA = Subtract from Address reg) - not allowed

= Word size and long size operation with address register as destination are allowed !!!

Examples:
MOVEA.W #3, A0 allowed
ADDA.W #3, A0 allowed
SUBA.W #3, AO allowed
MOVEA.L #3, AO allowed
ADDA.L #3, A0 allowed

2 of 3 6/1/17,2:26 PM

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/7-M68000...

SUBA.L #3, A0 allowed

m Any data size operation with data register as destination are allowed !!!

Examples:
MOVE.B #3, DO allowed
ADD.B #3, DO allowed
SUB.B #3, DO allowed
MOVE.W #3, DO allowed
ADD.W #3, DO allowed
SUB.W #3, DO allowed
MOVE.L #3, DO allowed
ADD.L #3, DO allowed
SUB.L #3, DO allowed

Notice also that the instruction mnemonic for data destination registers do not have the trailing letter A !!!

3 of 3 6/1/17,2:26 PM

