
Communicating Numerical Values between

Humans and Computers

Recall that all inputs entered by users from the keyboard is actually an ASCII code

This also applies when the entry is a number.

For example, if the program prompts the user to enter an integer value and the user wants to enter the

number 12, then he/she would type the keys '1' and '2', which will cause keyboard to transmit the

ASCII codes 00110001 for '1' and 00110010 for '2'

On the other hand, the integer value 12 is represented inside the computer by the 2's complement

code 00001100.

Therefore, the ASCII codes in the input must first be transformed into a 2's complement

representation (by a pretty complicated process)

NOTE: The Java API library has provided the programmers with such conversion program.

After you read in a line (consisting of ASCII codes) from the keyboard using:

 BufferedReader stdin = new BufferedReader

 (new InputStreamReader(System.in));

 String s = stdin.readLine();

You can convert this string of ASCII codes into a 2's complement representation with the parseInt()

library function:

 int i = Integer.parseInt(s);

The following material will basically show you what is going on inside this parseInt() library

function....

Converting ASCII input number into 2's complement code

I will use a concrete example to explain the process to make things easier to follow.

I will use the input string "12" - which actually consists of the two character ASCII codes 00110001

and 00110010

The output 2's complement representation for the value 12 is ofcourse 00001100

First, you have to understand the difference between the character '1' and the integer 1

CS255 Sylabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/5-repr/c...

1 of 6 5/28/17, 5:33 PM

The representation for the character '1' is 00110001 (binary)

The (8 bit) representation for the integer 1 is 00000001 (binary)

So to obtain the value that is represented by the character '1', we subtract 00110000 from the ASCII

code for '1' (00110001):

 '1' -----> 00110001

 - 00110000

 00000001

Since the character represented by the code 00110000 is '0', we can also write:

 '1' -----> 00110001

 - (int) '0'

 00000001

Here is a start of the program that is used to convert ASCII number representation to 2's complement

representation:

The input "12" is processed from left to right. When the program processes the first digit '1', it

performs the following calculation:

 value = 0;

 value = (int) '1' - (int) '0';

This will assign the integer 1 to value (i.e., value = 00000000000000000000000000000001(2));

When the program processes the second digit '2', it would process the string "12" and must obtain the

binary value 00000000000000000000000000001100

This can achieved by the following statement:

 value = 10*value + ((int) '2' - (int) '0');

 ^ ^

 | |

 | This difference produces the integer value 2

 |

 Since value was 1, this multiplication results in 10

The above statement will assign the integer 12 to variable value (i.e., value =

00000000000000000000000000001100(2));

If you really must know, the computer performs all the operations in binary:

 10 = 00001010

 value = 00000000000000000000000000000001 *

 --

 10*value = 00000000000000000000000000001010

 '2' - '0' = 00000010 +

CS255 Sylabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/5-repr/c...

2 of 6 5/28/17, 5:33 PM

 --

 00000000000000000000000000001100 ---> represents 12

The program must process every digit in the input ASCII number to obtain the final value.

Program code:

 // parseInt(s): returns 10's complement integer representation for string s

 public static int parseInt(String s)
 {
 int startpos, sign;
 int value;
 int i;

 /* -------
 Make sure the string is a positive number
 ------- */
 if (s.charAt(0) == '-')
 { sign = -1;
 startpos = 1;
 }
 else
 { sign = 1;
 startpos = 0;
 }

 /* -------
 Convert string to two's compl. representation

 Eg: "123" ---> 1
 1*10 + 2 = 12

 12*10 + 3 = 123
 ------- */
 value = 0;
 for (i = startpos; i < s.length(); i++)
 {
 value = ((int) s.charAt(i) - (int) '0') + 10*value;
 }

 if (sign == -1)
 value = -value;

 return(value);
 }

Example Program: (Demo above code)

Prog file: click here

The parseInt method has one additional step not discussed, namely: checking for a "minus" symbol.

This step is relatively easy....

CS255 Sylabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/5-repr/c...

3 of 6 5/28/17, 5:33 PM

The following program is a "demo" version of the parseInt method that will spit out a lot of

intermdiate data to show you what's going on in the process: AtoiDemo.java

Converting 2's complement code to ASCII code for printing....

Note that the terminal is an "ASCII oriented" device, meaning that a terminal "speaks the ASCII

language" and you must "talk to it in ASCII"....

So it you have an integer variable and this variable contains the 2's complement code for the value 72

(so it has 00000000000000000000000001001000), and you send the binary representation to the

terminal, the terminal will promptly print..... the character H !!! (because that's 72 is the ASCII code

for H)...

In order to see "72" printed to the terminal, you would have to send these following ASCII codes to the

terminal:

00110111 (for '7') and 00110010 (for '2')

Here is a program that prints the integer 72: click here

Compile it and run it using the command:

java Print72 > out

Use the following command to look what was printed:

cat out

Then use the following command to look inside the output file:

od -x out

It will show an "hex dump" of the content of the file. Can you see the ASCII codes ?

When you write programs in Java and use:

 System.out.println(....)

to print out integers, the function will first convert the 2's complement representation into a String of

ASCII codes and then send the ASCII codes to the output.

Converting a 2's compl. encoding to ASCII digit string (for output):

The process of converting a 2's compl. encoding to ASCII digit string is as follows (I will also use

decimal notation because you are most comfortable with this notation. All calculations are done in

binary within the computer).

I will use a simple example to illustrate:

CS255 Sylabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/5-repr/c...

4 of 6 5/28/17, 5:33 PM

 00000000000000000000000000001100 | 12

 |

 divide by 00000000000000000000000000001010 | divide by 10

 |

 |

 Quotient = 00000000000000000000000000000001 | Quotient = 1

 Remainder = 00000000000000000000000000000010 | Remainder = 2

 |

 Save the remainder and repeat the steps using the quotient (if Q > 0)

 |

 00000000000000000000000000000001 | 1

 |

 divide by 00000000000000000000000000001010 | divide by 10

 |

 |

 Quotient = 00000000000000000000000000000000 | Quotient = 0

 Remainder = 00000000000000000000000000000001 | Remainder = 1

 |

 Save the remainder and stop (Q = 0)

The string of remainders forms the number in the "reverse" order.

Note:

The remainder obtained by the divisions are in the 2's complement representation

It is easy to obtain the corresponding character ASCII code: simple add the ASCII code for '0'

to the value

Program code:

 // toString(x): converts 10's complement value x into an ASCII string

 public static String toString(int value)
 {
 int sign, i, j;
 String result;
 char next_digit;
 char next_char;

 /* --
 Take care of the value 0
 -- */
 if (value == 0)
 return("0");

 /* --
 Make sure the number to convert is positive
 -- */
 if (value < 0)
 { sign = -1;
 value = -value;

CS255 Sylabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/5-repr/c...

5 of 6 5/28/17, 5:33 PM

 }
 else
 { sign = 1;
 }

 /* --
 Convert number

 N N/10 N%10
 =================================
 --- result ""

 E.g.: 123 ---> 12 and 3 --- result "3"
 12 ---> 1 and 2 --- result "23"

 1 ---> 0 and 1 --- result "123"
 --- */

result = "";

 /* --
 Take care of all other values (except 0)
 -- */
 while (value > 0)
 {
 next_digit = value % 10; // reminder = next digit

 next_char = (char) (next_digit + '0') ; // Convert to ASCII code

result = next_char + result; // Put digit at start of number

 value = value / 10; // remove the processed digit

 }

 // Put in the negative sign if needed....
 if (sign == -1)
 {
 result = "-" + result;
 }
 else
 {
 result = "" + result; // optional...
 }

 return(result);
 }

Example Program: (Demo above code)

Prog file: click here

I also have a "Demo version" of the same program that shows how the process works: click here

CS255 Sylabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/5-repr/c...

6 of 6 5/28/17, 5:33 PM

