Excess 2ⁿ⁻¹ encoding

- 2's complement encoding
 - The 2's complement encoding makes the assumption that:

```
• The representation for the value 0 is: 00000000
```

This results in the following assignment scheme of binary numbers and values:

- Excess 2ⁿ⁻¹ encoding
 - There is another way to obtain a representation of signed numbers
 - The Excess 2^{n-1} encoding makes the assumption that:

• Example: Excess 2^{n-1} encoding with n = 8 bits

• The Excess 128 (= 2^{8-1}) encoding scheme makes the assumption that:

• The **representation** for the **value 0** is: 10000000

This results in the **following assignment scheme** of **binary numbers** and **values**:

• The Excess 128 encoding scheme is as follows:

```
Code
          Value
==================
               <--- smallest negative value with 8 bits (-2^7)
0000000 -128
0000001 -127
. . . . .
01111000
            -8
01111001
            -7
01111010
            -6
01111011
            -5
01111100
            -4
01111101
            -3
01111110
            -2
01111111
            -1
1000000
             0
10000001
             1
10000010
             2
10000011
             3
10000100
             4
             5
10000101
10000110
             6
10000110
             6
10000111
             7
10001000
             8
. . . . .
11111111
          127 <--- largest positive value with 8 bits (2^7-1)
```

Note:

The representation 00000000 represents the value –128 !!! This is not a typo !!!

• Wikipedia calls this scheme offset binary: click here

```
• Another possible offset: 2^{n-1} - 1
```

• There is another commonly used choice for the representation of the value 0

• The Excess 2^{n-1} –1 encoding makes the assumption that:

 The representation for the value 0 is: 011111...11111
 The binary number 011111...11111 of n bits is the representation for the value 2ⁿ⁻¹-1 (Hence the encoding is called Excess 2ⁿ⁻¹-1 encoding)

• Example: Excess $2^{n-1}-1$ encoding with n = 8 bits

• The Excess 127 (= $2^{8-1}-1$) encoding scheme makes the assumption that:

• The **representation** for the **value 0** is: **0111111**

This results in the **following assignment scheme** of **binary numbers** and **values**:

• The Excess 127 encoding scheme is as follows:

Code	Value	_								
00000000	-127	_ <	smallest	negative	value	with	. 8	bits	(-2^{7})	
0000001	-126									
01111000	-7									
01111001	-6									
01111010	-5									
01111011	-4									
01111100	-3									
01111101	-2									
01111110	-1									
01111111	0									
10000000	1									
10000001	2									
10000010	3									
10000011	4									
10000100	5									
10000101	6									
10000110	7									
10000110	8									
10000111	9									
10001000	10									
11111111	128	<	largest	positive	value	with	8 1	bits	(27-1)	

Note:

• Note:

• We will see the **excess 127** encode again when we discuss **floating point number representation**

• Excess 127 is used to represent the exponent of the single precision IEEE 754 standard.