
Intro to "twos complement encoding"

Let's start with a small "Odometer code" using binary numbers:

3 binary digits odometer

The odometer encoding is:

Odometer reading: 100 101 110 111 000 001 010 011

----------------- +----+----+----+----+----+----+----+

Value represented: -4 -3 -2 -1 0 1 2 3

Note:

With 3 bits, we can represent only values between [-4, 3]

With 3 bits, we can values between [-22, 22-1]

Let's look at "odometer code" using one byte of mamory:

8 binary digits odometer

With 8 bits, we can values between [-27, 27-1] = [-128, 127]

The 2's complement number encoding is:

Code Value

================

10000000 -128 <--- smallest negative value with 8 bits (-27)

10000001 -127

.....

11111000 -8

11111001 -7

11111010 -6

11111011 -5

11111100 -4

11111101 -3

11111110 -2

11111111 -1

00000000 0

00000001 1

00000010 2

00000011 3

00000100 4

00000101 5

00000110 6

00000111 7

00001000 8

.....

01111111 127 <--- largest positive value with 8 bits (27-1)

The mapping of the representation to the value that it represents is based on the following circular (modulo)

addition:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/5-repr/2s...

1 of 9 5/27/17, 10:34 PM

Property:

If you move clock-wise on representation wheel, you will add 1 to the representation

Therefore, the representation that you get by moving clock-wise must be 1 larger in

value

If you move counter clock-wise on representation wheel, you will subtract 1 to the representation

Therefore, the representation that you get by moving counter clock-wise must be 1

larger in value

Decoding a 2's complement representation

Again, to use 2s complement code, you need to know how to convert a value to 2s complement and vice versa

Look at the following table carefully to discover the coding & decoding method:

2's compl Value Compare with: Value Binary number system

================ =============================

10000000 -128 128 10000000

10000001 -127 127 01111111

.....

11111000 -8 8 00001000

11111001 -7 7 00000111

11111010 -6 6 00000110

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/5-repr/2s...

2 of 9 5/27/17, 10:34 PM

11111011 -5 5 00000101

11111100 -4 4 00000100

11111101 -3 3 00000011

11111110 -2 2 00000010

11111111 -1 1 00000001

00000000 0

00000001 1 1 00000001

00000010 2 2 00000010

00000011 3 3 00000011

00000100 4 4 00000100

00000101 5 5 00000101

00000110 6 6 00000110

00000111 7 7 00000111

00001000 8 8 00001000

.....

01111111 127 127 01111111

Notice that:

2s complement representation for positive values is same as that used in binary number system

Example:

 00000000

 00000001 1

 00000010 2

 00000011 3

 00000100 4

 00000101 5 <-----

 Representation

 00000101 -> 4 + 1 = 5

 ^ ^ ^

| |

4 1

2s complement representation for negative values added to the binary number for its absolute value is

equal to 100000000.

Example:

 11111010 -6

 11111011 -5 <-----

 11111100 -4

 11111101 -3

 11111110 -2

 11111111 -1

 00000000 0

 11111011 = representation for -5

 + 00000101 = representation for 5 (absolute value of -5)

 100000000

These observations will help you understand the conversion procedures below.

Converting a value v to its 2's complement code:

If value v is positive, then:

the 2's complement code is the same as its representation in the binary number system

If value v is negative, then:

First, obtain the binary number representation x for -v (note: -v is positive !)

Then, compute 100....000 - x, where the number 100....000 has exactly the same number of 0's as the

number of bits in x.

Example:

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/5-repr/2s...

3 of 9 5/27/17, 10:34 PM

 v = 7 The value is positive, so:

 (1) Binary number representation is: 111

 (2) 8 digit 2's complement representation is: 00000111

 16 digit 2's complement representation is: 0000000000000111

 and so on...

 v = -7 The value is negative, so:

 (1) Binary number representation for 7 is: 111

 (2a) 8 digit 2's complement representation for 7 is: 00000111

 (3a) 8 digit 2's complement representation for -7 is:

 100000000

 - 00000111

11111001

 (2b) 16 digit 2's complement repr. for 7 is: 0000000000000111

 (3b) 8 digit 2's complement repr. for -7 is:

 10000000000000000

 - 0000000000000111

1111111111111001

Converting a 2's complement code c to a signed value

If the encoding c begins with 0, it encodes a positive value and the value is "face value" in binary (but you

will still need to convert it to decimal to be "comprehended" by humans)

If the encoding c begins with 1, it encodes a negative value and its absolute value is equal to 100...000 - c

in binary (which again you will need to convert it to decimal to be "comprehended" by humans)

Example:

 code c = 00010010 -> it is a positive number

 the value = 00010010 in binary

 Convert to decimal: 0 0 0 1 0 0 1 0

 16 + 2 = 18

 Value = 18

 code c = 11101110 -> it is a negative number...

 (1) Compute: 100000000

 - 11101110

 00010010

 (2) the absolute value of the negative value

 is equal to 00010010 (binary), which is equal

 to 18 (decimal)

 (3) Since the value is negative, the value represented

 by 11101110 is: -18 !

NOTE: from the examples above:

00000111 represents 7

11111001 represents -7

00010010 represents 18

11101110 represents -18

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/5-repr/2s...

4 of 9 5/27/17, 10:34 PM

that:

to negate a value, you must subtract the representation by 1000...000

NOTE: there is an easier way to negate a 2s complement code:

To negate 7, we subtract the binary number 7 from 1000...0000

Example in 8 bits:

 100000000

 - 00000111 (= 7)

 11111001 (= -7)

The subtraction can be broken up in 2 steps as follows:

 100000000 - 00000111 = (1 + 11111111) - 00000111

 = 1 + (11111111 - 00000111) [easy subtraction !]

= 1 + 11111000 [result is same as flipping bits !]

Summary: to negate a 2s complement representation:

Flip every bit in the 2s complement representation

Add 1 to the result

Another example:

As you saw above: 00010010 represents +18

 To get the representation for -18, you can do this:

(1) Flip each bit: 00010010 -> 11101101

(2) Add 1 to result: 11101101

 + 1

11101110

 which is - as you saw above - the representation for -18

Properties of 2's complement encoding:

Only one representation for ZERO (check for yourself)

Operations are "natural" - see examples below

Arithmetic with 2's complement encoding

Adding 2's complement numbers:

 Values 8 digit 2's compl repr

Adding 2

positive 5 00000101

values + 9 + 00001001

 ----- ----------

 14 00001110 -> 8 + 4 + 2 = 14

Adding

positive + 5 00000101

negative + -9 + 11110111

 ----- ----------

 -4 11111100 -> represents -4

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/5-repr/2s...

5 of 9 5/27/17, 10:34 PM

Adding

negative + -5 11111011

positive + 9 + 00001001

 ----- ----------

 4 00000100 -> represents 4

Adding 2

negative -5 11111011

values + -9 + 11110111

 ----- ----------

 -14 11110010 -> represents -14

Subtracting 2's complement numbers:

 Values 8 digit 2's compl repr

Subtract 2

positive 5 00000101

values - 9 - 00001001

 ----- ----------

 -4 11111100 -> represents -4

Subtract

positive - 5 00000101

negative - -9 - 11110111

 ----- ----------

 14 00001110 -> represents 14

Subtract

negative - -5 11111011

positive - 9 - 00001001

 ----- ----------

 -14 11110010 -> represents -14

Subtract 2

negative -5 11111011

values - -9 - 11110111

 ----- ----------

 4 00000100 -> represents 4

Overflow

Overflow

What is "overflow":

Using 8 bits, we can represent the binary values between -128 and 127

Computer operation manipulate (change) the representation

For example:

00000011 <---- representation for the value *** (3)

 + 00000101 <---- representation for the value ***** (5)

00001000 <---- representation for the value ******** (8)

When the result of some operation on byte representations falls outside this range, then the value that is

represented by the result is different from the correct value.

This phenomenon is called overflow

Overflow is a part of our daily life now that the computer is an integral part of our society and you should

be aware of this phenomenon so you do not get caught by surprise...

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/5-repr/2s...

6 of 9 5/27/17, 10:34 PM

Here is a program that demonstrates the overflow phenomenon: click here DEMO

Try entering 1 + 1

and then: 127 + 1 (this will cause an overflow)

Do you understand why there is overflow at 127 using byte variables ??

The following program is the same as the previous one, except I have added a function to print out the binary

representation of the values.

You can use this program to see why the program prints certain results: click here DEMO

Computer can manipluate integers of various lengths:

8 bits (byte type in Java, char type in C, C++)

16 bits (short type in Java, C and C++)

32 bits (int type in Java, C and C++)

64 bits (long type in Java, C and C++)

128 bits (long long type in C and C++)

This program shows the effect of using more bits: click here DEMO

Other types of variables also have overflow problems, just later...

short type variables will overflow at around 32000 (215)

int type variables overflow at around 2 billion (231)

Use the previous demo program to verify.

Converting between 2's complement representation of different sizes

The computer can use different numbers of bits to represent signed integer quantities:

byte (very short integer, values between -127 and 128)

short integer (values between -32767 and 32768)

(ordinary) integer (values between -231 and 231 - 1)

long integer (values between -263 and 263 - 1)

Sometimes, the programmer needs to convert a byte to a short or a short to an integer in the program.

This kind of operations is called a type conversion

A data type is a certain data representation used in the computer

The various kinds of integer representations (byte, short, int and long) are considered as different data

representations

When the computer computer needs to convert (change) from one represention to another representation, the key

of the change must be that: the value of BOTH representation MUST BE EQUAL (because the value is

intrinsic and does not change)

Converting from a shorter representation to a longer representation

Sign extension (widening conversion):

Notice that:

8 bit 2s compl. repr. for 7 is: 00000111

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/5-repr/2s...

7 of 9 5/27/17, 10:34 PM

16 bit 2s compl. repr. for 7 is: 0000000000000111

8 bit 2s compl. repr. for -7 is: 11111001

16 bit 2s compl. repr. for -7 is: 1111111111111001

To obtain the representation for the same value using more bits, the computer must "extend" the left most

bit.

Example

 int i;

 short s;

 s = 9; <---- s is assigned 0000000000001001

 i = s; <---- assign an 16 bit integer to a 32 bit integer

 (1) 0000000000001001 is sign-extended to:

 00000000000000000000000000001001

 (2) Then the value is store in variable i

 s = -9; <---- s is assigned 1111111111110111

 i = s; <---- assign an 16 bit integer to a 32 bit integer

 (1) 1111111111110111 is sign-extended to:

 11111111111111111111111111110111

 (2) Then the value is store in variable i

The left most bit in a 2's complement code is a sign bit:

All of the positive (and 0) values are represented by 2's complement codes that

starts with 0.......

All of the negative values are represented by 2's complement codes that starts

with 0.......

Therefore, we call this "extend" the left bit operation:

Sign extension

Converting from a longer representation to a shorter representation

Narrowing conversion (casting):

Narrowing conversion is when you convert a value from a "longer" representation to a "shorter"

representation.

You truncate the left-most portion of the longer representation to obtain the shorter

representation of the same value

But: you may not obtain a correct representation due to overflow !!!

Example:

 int i;

 short s;

 i = 9; <---- i is assigned 00000000000000000000000000001001

 s = i; <---- assign an 32 bit integer to a 16 bit integer

 (1) 00000000000000000000000000001001 is

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/5-repr/2s...

8 of 9 5/27/17, 10:34 PM

truncated to 0000000000001001

 (2) Then the value is store in variable s

 i = -9; <---- i is assigned 11111111111111111111111111110111

 s = i; <---- assign an 32 bit integer to a 16 bit integer

 (1) 11111111111111111111111111110111 is

truncated to 1111111111110111

 (2) Then the value is store in variable i

Narrowing conversion (truncation) can result in a represention for a value that is different than the

original value:

 i = 90000; i is assigned 00000000000000010101111110010000

 s = i; (1) 00000000000000010101111110010000 is truncated to

 0101111110010000

 (2) assigned to s

 Problem: s represents 24464, (some bits lost !)

Program showing narrowing conversion: click here DEMO

The following program showing what happens when you convert:

byte -> short or int

short -> byte or int

int -> byte or short

Get the program here: click here DEMO

There are no problems from byte -> short or int

Try entering 89 and (restart program) 1000 as a short, you will see overflow in the byte variable

Try entering 89, (restart program) 1000 and (restart again) 80000 as int, you will see overflow in the byte

variable for 1000, and overflow in short and byte for 80000.

CS255 Syllabus http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/5-repr/2s...

9 of 9 5/27/17, 10:34 PM

