Intro to "tens complement encoding"

• Encoding: a mapping of one system into another system

Comment: encoding is like a kind of "secret word" game that kids like to play where they replace one letter by another. For example, one common code used by kids is "+1 psoition", so that B means A, C means B, and so on (A means Z). So a secret massage "Ifmmp" means "Hello".

• Example encoding: Morse code

encode letters in English alphabet using short and long pulses

Example:

... is S --- is O

Try this Morse code applet: click here

• Remember that numeric value is something *intrinsic* and does not depends on the system of representation: <u>click here</u>.

We now introduce the 10's complement encoding to represent signed values

- We define the following "Odometer code":
 - 3 digits odometer
 - The odometer encoding:

Odometer reading:	500	 996	997	998	999	000	001	002	003	 499
	+	 +	+	+	+	+	+	+	+	 +
Value represented:	-500	 -4	-3	-2	-1	0	1	2	3	 499

- Various notes & comments:
 - Negative values are represented
 - Values greater than 499 and less -500 cannot be represented ("out of range")
 - Operations can produce values that are **out of range**. This condition is called **overflow**.

When overflow occurs, erroneous results will be produced

Demo program for OVERFLOW: <u>click here</u>

To effectively use a code, you need to be able to: (1) encode and (2) decode

So: to use 10s complement code, we need to know how to convert a value to 10s complement and vice versa

• Convert a value v to its 3 digit 10's complement encoding:

■ If value v is positive, just write the number out in 3 digits

 If value v is negative, compute 1000 + v and write the result out in 3 digits
 Example:
 v = 3 3 digit 10's complement representation: 003 v = 103 3 digit 10's complement representation: 103 v = -3 3 digit 10's complement representation: 1000 - 3 = 997 v = -103 3 digit 10's complement representation: 1000 - 103 = 897

- Convert a 3 digit 10's complement encoding **c** to a signed value
 - If the encoding c begins with 0, 1, 2, 3 or 4, it is a positive value and the value is "face value" (without the leading 0's)
 - If the encoding c begins with 5, 6, 7, 8 or 9, it is a negative value and the value is equal to 1000 - c

Example:

```
code c = 413 -> it is a positive number
    the value = 413
code c = 613 -> it is a negative number...
    Compute: 1000 - 613 = 387
    the value = -387
```

- Properties of 10's complement encoding:
 - Only one representation for ZERO (check for yourself)
 - Operations are "natural" see examples below
- Adding 10's complement numbers:

```
3 digit 10's compl repr
              Values
Adding 2
positive
                  5
                                    005
               + 9
                                  + 009
values
                ____
                                  ____
                 14
                                    014 -> represents 14
Adding
positive +
                 5
                                    005
negative
               + -9
                                  + 991
                                  ____
               ____
                 -4
                                    996 -> represents -4
Adding
negative +
                                    995
                 -5
                                  + 009
positive
               + 9
```

	4	004 -> represents 4
Adding 2	F	0.05
negative	-5	995
values	+ -9	+ 991
	-14	986 -> represents -14

• Subtracting 10's complement numbers:

	Values	3 digit 10's compl repr
Subtract 2 positive	5	005
values	- 9	- 009
	-4	996 -> represents -4
Subtract		
positive -	5	005
negative	9	- 991
	14	014 -> represents 14
Subtract		
negative -	-5	995
positive	- 9	- 009
	-14	986 -> represents -14
	<u> </u>	
Subtract 2		
negative	-5	995
values	9	- 991
	4	004 -> represents 4
		Ĩ