
CS255 Syllabus & Progress

Material covered are displayed in blue.

Intro to CS255: click here

Search the lecture notes:

Review of Computer Architecture and Intro to Program Organization

Logical View of a Computer System: click here

Structure of computer main memory: click here

Accessing the computer memory: click here

Program organization (where different parts of the program is put in memory): click here

The program translation process: click here

Before we can explain how the computer works - i.e., how it manipulates data, we must understand

how information are stored inside the computer...

1.

How information are stored in the computer

Fundamental data used in the computer (these values need to be stored)

Numbers (int, float, double)

Text (char)

Computer instructions

(Boolean values "true" is represented as the number 1 and "false" as number 0)

Storing numeric values inside the computer:

Numeric values: click here

Positional value representation: click here

Representing unsigned integers: click here

Arithmetic with binary numbers: click here

Other number systems:

Base-5 numbers: click here

Octal numbers: click here

Hexadecimal numbers: click here

Representing Signed integers: click here

10's complement number encoding: click here

2's complement number encoding: click here

2.

CS255 Syllabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/syl.html...

1 of 12 5/27/17, 10:07 PM

"Excess-n": an alternate binary encoding for signed values: click here

Fixed point numbers: click here

Floating point numbers

Floating point representation: click here

Floating point round off error: Float.java

Homework 1 re-enforces number system concepts: click here

A binary number information sheet: click here

Representing alphanumerical data inside the computer:

ASCII code: click here

Communicating textual data between humans and computers: click here

Communicating non-textual information to a computer:

Communicating Boolean values between humans and computers: click here

Communicating numerical values between humans and computers:

A trivial solution: click here

Working with ASCII codes: click here

Some Java facts: click here

Communicating numerical values between humans and computers: click here

Homework 2 re-enforces string <-> binary conversion: click here

Storing computer instruction inside the computer:

Instruction categories:

0 operand

1 operand (unary operation, e.g., negate)

2 operands (binary operation, e.g., add)

Instruction formats:

Variable length (Intel, Motorola M68000)

Fixed length (SPARC, MIPS)

M68000 Instruction encoding: click here

SPARC Instruction encoding: click here

What's that in the memory ? click here

3.

Intro to assembler programming

Intro: click here

From high level programming language to machine executable code: click here

General CPU architecture: click here

CPU operation: instruction execution cycle: click here

4.

CS255 Syllabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/syl.html...

2 of 12 5/27/17, 10:07 PM

Intro to M68000 assembler programming

Why assembler programming ? click here

M68000 CPU architecture: click here

Operands in M68000:

Intro: click here

Data Register operands: click here

Address Register operands: click here

Memory operands: click here

Operand data type and assembler instructions: click here

Intro to assembler programming: click here

M68000 Assembler directives: click here

M68000 Assembler Instruction: click here

M68000 instruction nmenomic codes and their meaning: click here

M68000 instruction nmenomic codes and the allowed addressing modes: click here

All M68000 instructions discussed in CS255 (work in progress): click here

5.

The Assignment Statement:

A simple example: C = A + B click here

M68000 addressing modes (tough topic...)

Immediate: click here

Absolute or Direct: click here

Homework 3 introduces the Egtapi programming environment, and re-enforces defining

and using simple variables with Assembler Directives and the Immediate & Direct Modes:

click here

This project is very easy to do, but make sure you assemble and run the program to

get familiar with Egtapi, or else, your future encounter with Egtapi with be very

unpleasant if you have to struggle with bugs in the assembler program and finding

out on how to operate Egtapi...

Address register indirect (with displacement): click here

Accessing data structures using the indirect modes:

Accessing arrays: click here

How is a linked list stored in memory: click here

Accesing data in linked list: click here

Address register indirect with index and displacement: click here

6.

CS255 Syllabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/syl.html...

3 of 12 5/27/17, 10:07 PM

Arithmetic operations:

The add, adda, sub, suba instructions: click here

The negate instruction: click here

The muls and divs instructions (simple multiply and divide): click here

Mixing int, short, byte operands:

Converting between integer of different sizes: click here

Assignment statement using different sizes: click here

Arithmetic expression using different sizes: click here

Mixed type operations with array variables: click here

Using the ext instruction on the results of the muls and divs instructions:

Multiply: click here

Divide: click here

A large example accessing data structures (includes linked list): click here

What about these "complicated" functions - like sin(x): click here

Homework 4 re-enforces using array variables and size conversion with M68000 assembler

instructions: click here

Now you know what the computer actually does when it executes an assignment statement: how it

evaluates an expression and assigns the result to a variable in a high level programming language

The Selection (if, if-else) Statements:

The Compare (cmp) and Branch instructions of M68000: click here

Selection statements in assembler:

Simple if: click here

Simple if-else: click here

Compound condition using and: click here

Compound condition using or: click here

Nested If-statements: click here

7.

Repetition statements in assembler:

While-statment: click here

For-statment: click here

Do-statment: do.s.

Traversing linked lists: click here

Homework 5 re-enforces the use of compare and branching in writing your first assembler program

containing a while loop and two if-statements: click here

Here is an additional practice to re-enforces linked list access and manipulation (and the WHILE loop

construct): click here (will be given only if there is sufficient time)

The midterm test will cover the material upto this point and will be scheduled soon.

8.

CS255 Syllabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/syl.html...

4 of 12 5/27/17, 10:07 PM

Now you know what the computer actually does when it runs a program. The only thing that you still

do not know is what happens in a function call (there is still a lot to learn...).

Programming project pj2 re-enforces loop and if-statements further with a sorting algorithm... click

here

Subroutines (a.k.a. methods, procedures, functions):

Prelude to subroutines: implementing a stack click here

Prelude to subroutines: try to use BRA to implement subroutines: click here

M68000 instructions for subroutine invocation and return click here

Passing parameters and return values: click here

Different ways to pass parameters to a function/subroutine:

Pass-by-value (a.k.a. Call-by-value): click here

Pass-by-reference: (a.k.a. Call-by-reference): click here

Important note: click here

Local variables (and parameter variables):

Intro to Subroutine with local variables: click here

Review: Lifetime of parameter variables and local variables: click here

How modern programming languages store parameter and local variables:

Modern languages: click here

using the stack to pass parameters and store local variables: click here

using a frame pointer to access parameters and local variables: click here

Recursion:

Reminder on parameter variables and local variable:

parameter variables and local variables are created when a function is invoked

parameter variables and local variables are destroyed when a function returns

We have learned how to implement this behavior using the system stack

Writing recursive functions in assembler code:

always pass parameters on the stack1.

always use the stack to store local variables2.

First recursion in assembler, the classical factorial: click here

Another classic recursive problem -- Fibonacci numbers: click here

I inserted some material here to help you understand how to program using recursion ---

not part of CS255 curriculum:

Review CS170: recursion is a divide and conquer technique to solve problems: click here

Review CS170: Tower of Hanoi click here

A tougher example of divide and conquer using recursion: click here (Not part of

CS255 material)

9.

CS255 Syllabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/syl.html...

5 of 12 5/27/17, 10:07 PM

Tower of Hanoi in M68000 assembler code: click here (skipped for brevity - read through

it yourself)

Programming project hw7 re-enforces recursion: click here

Working with linked lists:

Remember how linked lists are stored inside the computer: click here

Insert at start of the linked list: click here

Insert a new element at the tail of the list:

Iterative algorithm to insert at tail of a list: click here --- skipped (just loop and if,

you can read it)

Recursive algorithm to insert at tail of a list:

My CS171 material on the algorithm: click here

M68000 program: click here

Insert into an ordered list: as hw8

Programming project hw8 re-enforces linked lists: click here

If you understand everything so far, you now know exactly what is going on when a computer

executes a program. You can apply what you learn and write assembler programs in any

assembler language, e.g., Intel Pentium, IBM PowerChip, DEC Alpha, SunMicrosystem

SPARC... To program with a new chip, all you need to learn are:

its architecture (registers),

the addressing modes

the instruction mnemonic codes and what they do.

I have SPARC and Intel material after the C lecture notes to demonstrate this process.

Introduction to the (System Programming Language) C for Java programmers

Introduction to C programming: click here

Things that are identical in Java and C: click here

Introduction to the C Pre-processor:

Intro: click here

Macros (#define): click here

Including files (#include): click here

Conditional compilation: click here

A trick to prevent a file being included multiple times: click here

C's data types and variables:

C's data types:

Overview: click here

Operations involving same and different data types: click here

10.

CS255 Syllabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/syl.html...

6 of 12 5/27/17, 10:07 PM

Conversion rules in C: click here

The const modifier: click here

Basic input/output:

Printing values of the built-in data types: click here

Reading in values of the built-in data types: click here

Operators:

Arithmetic Operators: click here (+, -, *, /)

Bit-wise-Operators:

The bit-wise operators: (&, |, ^, ~) click here

How to use the bit-wise operators: click here

Denoting values in base 2, 8 and 16: click here

Bit manipulation functions - clear a bit, set a bit, flip a bit and test a bit: click here

Shift-Operators: click here (>>, <<)

Intro: click here

Set bit at position n: click here

Clear bit at position n: click here

Flip bit at position n: click here

Test bit at position n: click here

Assignment Operators: click here (+=, -=, *=, /=, &=, |=, ~=, >>=, <<=)

Increment/decrement Operators: click here (++, --)

Boolean data type and operations:

The Boolean data type in C: click here

Compare and Logic Operators: click here (<, <=, >, >=, ==, !=, &&, ||, !)

The conditional operator ?: click here

The comma operator , click here

The sizeof operator click here

Priority and Associativity of the C operators click here

Statements:

Assignment Statement: click here

Selection Statements (if, if-else, switch): click here

Loop Statements (while, for, do-while): click here

Arrays:

Defining and using one-dimensional array variables: click here

Review: static and dynamic arrays: click here

CS255 Syllabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/syl.html...

7 of 12 5/27/17, 10:07 PM

Array bound checks: click here

Defining and using two-dimensional array variables: click here

"Bit" arrays: click here

Functions (methods):

Intro to C Functions: click here

Single file C program: Declaring functions:

Preliminary to function declaration:

Parameters/return values in a function call: click here

Correctness requirement on function call with mismatched (1) parameter type and

(2) return value type: click here

Automatic conversion rules for function calls: click here

Important differences between the C and Java compilers:

One file vs. multi-file searching: click here

One-pass vs. two-pass compiler: click here

Implicit function prototyping in C: click here

Function declaration:

Function prototype --- declaring a function: click here

Removing the Implicit function prototyping in C: click here

The difference between defining and declaring a function in C: click here

Multi-files C programs: the importance of declaring functions:

The simplest way to compile a multiple files C program: click here

The correct way to compile a multiple files C program: click here

The importance of function declaration in multi-file C programs: click here

Declaring function using header files: click here

The make (UNIX) utility: (SKIP if time constrainted)

Specifying dependency between files --- makefiles: click here

The make utility: click here

Structure of makefiles: click here

Inference rules used in makefiles: click here

Macros in makefiles: click here

Miscellaneous makefile stuff (line continuation, comment, ...): click here

The Parameter passing mechanism of C: click here

Hand out C Project 1: click here

11.

CS255 Syllabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/syl.html...

8 of 12 5/27/17, 10:07 PM

Intermediate topics: things that look similar in C and Java but work differently

Variables in C:

Kinds of variables in C: click here

Brief review: Life time and Scope of the variables: click here

Life time of variables in C: click here

Scope of variables in C:

Scoping rules for: (1) global, (2) static global and (3) static local variables:

click here

Declaring global variables in C: click here

C Pre-processor trick to define and declare global variables: click here

Scoping rules for local and parameter variables in C: click here (pay attention !)

More on arrays: declaring arrays and array as parameters of functions

Declaring array variables: click here

Functions with array parameters: click here

Declaring functions that have array parameters: click here

Debugging a C program:

Using the gdb debugger: click here

12.

Advanced datatypes

Reference data type and reference (pointer) variables

Reference (pointer) data type and variables: click here

The reference (&) operator click here

Storing the result of reference (&) operator in reference data typed variables: click here

Using reference variables --- the dereference (*) operator: click here

How to read C's syntax for variable definition:

How to read "datatype *": click here

How to read "const": click here

Reference variables as parameters in a function (pass-by-reference): click here

Functions returning a reference : click here

The (type *) casting operator: click here

User-defined types:

Structures:

Defining and using struct type and variables: click here

Declaring struct variables: click here

struct parameter variables: click here

Function that returns a struct: click here

13.

CS255 Syllabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/syl.html...

9 of 12 5/27/17, 10:07 PM

Size of a struct "object": click here

Unions: click here

Enumeration types: click here

Bit fields structures: click here

Pointer to user-defined type (just add *): click here

The short-hand operator ->: click here

Passing user-defined typed variables "by reference": click here

C's typing mechanism: by (type) name equivalence: click here

typedef: defining a new name for a type (not defining a new type): click here

How to create and maintain linked lists in C:

Review of linked lists and how to define linked list elements in C: click here

Introduction to linked lists in C: click here

Caveat: free deleted list elements !!! click here

Inserting and deleting at the head of a list:

Insert at head of list: click here

Delete at head of list: click here

Recursion: Inserting and deleting at the tail of a list: click here

Hand out C Project 2: click here

Pointer arithmetic and Arrays

Pointer arithmetic: click here

Accessing arrays with pointers : click here

Using pointer arithmetic to implement Dynamic arrays: click here

The [] operator: click here

Using the [] operator to implement Dynamic arrays: click here

The equivalance of pointers and arrays in C: click here

The ++ and -- operators used in pointer arithmetic: click here

We have cover all operators !!. C's operators and their precedence: click here

Strings in C --- arrays of char: click here

Some Strings functions in C Standard library click here

Array of Strings --- command line arguments: click here

Miscellaneous topics in C

Special kinds of variables in C:

register variables: click here

Function parameters:

14.

CS255 Syllabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/syl.html...

10 of 12 5/27/17, 10:07 PM

Passing a function as a parameter to a function: click here

Hand out Homework 7 to re-inforce C++ programming click here

That's all, Folks !

Additional Enrichment Material: Intel 80x86 programming (not covered in CS255)

A free Intel Macro Assembler (if you want to write assembler on your PC): RIGHT click here

and SAVE AS

An online documentation on Assembler programming with MASM: click here

Intel Assembler Code Table: click here

The Intel 80x86 CPU architecture: click here

The Intel 80x86 directives: click here

The Intel 80x86 Addressing modes: click here

Arithmetic operations: click here

Compare and Branch: click here

Subroutine call and return: click here

The Art of Assembler Language Programming book: click here

Check out chapter 6

Rough notes on Intel Assemler programming:

Intel registers: click here

Intel registers: click here

Reserving space for variables: click here

Addressing modes (MOV): click here

Arithmetic: click here

CMP and Jump: click here

Stack, procedure call/return: click here

Other resources:

Matloff GNU assembler programming tutorial: click here

Sourceforge GNU assembler programming tutorial: click here

Free Intel Macro Assembler (if you want to write assembler on your PC): RIGHT click here and

SAVE AS

Intel Assembler Programming book - this book is like the CS255 course using Intel Assembler

code: click here

15.

CS255 Syllabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/syl.html...

11 of 12 5/27/17, 10:07 PM

Step by step Windows programming tutorial shows you how to write window programs, menus,

call backs, etc: click here

The Art of Assembly Programming (a very good online book, but the 32 bit version uses a

non-standard assembler called "HLA" - High Level Assemble language) click here

CS255 Syllabus & Progress http://www.mathcs.emory.edu/~cheung/Courses/255/Syllabus/syl.html...

12 of 12 5/27/17, 10:07 PM

