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With the 80x86’s wide variety of control transfer instructions you can easily generate any program flow you need.
Too easily, in fact. While assembly language provides the tools to let you create a brand new control structure “on the
spot,” an undisciplined approach can lead to programs which are nearly impossible to read and understand.

High level language designers realized this long ago and invented new languages with restricted control abstrac-
tions to force this discipline. This, combined with the field of Software Engineering and the rise of 

 

structured program-
ming

 

 provided dramatic increases in the quality of software over the past two decades. Today, structured programming
techniques are taken for granted by most professional programmers. 

Unfortunately, assembly language is still stuck in the dark ages with respect to control structures. While many high
level languages today have omitted the GOTO statement in favor of structured IF..THEN..ELSE, CASE, REPEAT..UNTIL,
and WHILE, assembly still provides little more than conditional and unconditional jumps. Since you can synthesize
almost 

 

any

 

 control structure from these conditional and unconditional jumps, you might believe that you should use
these statements to their full potential. However, as mentioned above, doing so can destroy the readability of your code.
Therefore, you should stick to synthesizing those same HLL control flow constructions so that your programs will be eas-
ier to read.

In this chapter you will explore the synthesis of high level language constructs in assembly language and how they
improve the readability of your programs. You will also study the costs associated with structured programming. In this
laboratory you will also begin studying some “real world” applications and put what you’ve learned to work. In particu-
lar, you will write some code to generate music using the built-in speaker in your PC.

 

8.1 Decisions with the IF..THEN Statement

 

The most fundamental unit of execution on a typical Von Neumann machine is the 

 

sequence

 

- a list of instructions
which the machine executes one after another. The second most common execution unit is the 

 

conditional

 

- execution
(or not) of a statement based upon some pre-existing condition. In modern HLLs, the most commonly used conditional
statement is the IF..THEN..ELSE statement. Since most programmers learning assembly language for the first time are
quite familiar with this statement, it makes a good starting point for the discussion of conditional execution.

You can actually use any of the 80x86’s flow of control instructions (jumps, calls, returns, interrupts, etc.) as condi-
tional instructions. Most of the time, however, you will probably use the 80x86 conditional jump instructions to condi-
tionally execute some sequence of instructions. Unfortunately, the loose syntax of the conditional jump instructions
provide you with an overwhelming number of ways to accomplish the task at hand. While they are certainly more flexi-
ble than HLL alternatives, this flexibility has a cost: the number of alternative solutions is greater (and therefore more
confusing to a beginning) and, therefore, there are many different solutions to the same problem which different pro-
grammers use. One programmer’s solution might be completely different from another’s. As a result, they will have diffi-
culty understanding each other’s code. We’re not talking about implementing some obscure or complex algorithm here;
we’re talking about implementing an IF..THEN..ELSE statement in assembly language!

The best solution for beginning assembly language programmers is to personally enforce some structure where
MASM does not.  If you define your conditional operations in terms of high level IF..THEN..ELSE statements and then
convert them to assembly language using a 

 

template driven

 

 approach, you should have no problems writing conditional
statements in assembly language nor will you or your colleagues have trouble understanding the result. Now it is quite
true that using this template driven approach may producing code which is larger and slower than it needs to be, how-
ever now is not the time to worry about efficiency. Once you are very comfortable with assembly language you can
worry a little more about the speed of your programs.

 

8.1 What are the two problems beginners face with the flexibility of assembly language condi-
tional statements? ____________________________________________________________________

______________________________________________________________________________________

______________________________________________________________________________________
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The IF..THEN statement is an important special case of the IF..THEN..ELSE. Since the IF..THEN is somewhat easier
to implement and understand, its implementation is a good starting point. Consider the IF..THEN statement in Pascal:

 

IF 

 

boolean_expression 

 

THEN 

 

statement

 

We can diagram this as follows:

The implementation of this flow diagram in assembly language is surprisingly similar to the computation of boolean
expressions in the last chapter. Indeed, about the only difference is that you execute the specified statements rather than
set some variable to zero or one.

One major advantage to HLLs is that it is often easier to read and understand a conditional expression than it is to
read and understand the same condition in assembly language. Therefore, it makes sense to organize your assembly
expressions to make them easier to read and understand.

 

8.2 What condition does the Pascal statement “IF (X = Y) and (A < B) then Writeln(‘True’):” test?

______________________________________________________________________________________

______________________________________________________________________________________

8.3 What condition does the following assembly code test?

mov ax, X
cmp ax, Y
jne DontDoIt
mov ax, A
cmp ax, B
jng DontDoIt
print
byte “TRUE”,cr,lf,0

DontDoIt:

_____________________________________________________________________________________

_____________________________________________________________________________________

Test Some Condition

Execute some statement(s) if the
condition evaluates to true

Fall through to the following state-
ment if the condition is true or false

IF..THEN  Structure:
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8.4 Which of the above two code sequences do you believe is easier to read
and understand? __________________________________________________

 

Since conditional statements are a little more difficult to read and understand in assembly
language, you have to work a little harder to clarify your code. Without question, the most
important thing you can do to improve the readability of your conditional sequences is to place
a comment before each code section which describes the test you are performing. Consider the
code from question 8.3, rewritten with a 

 

single comment

 

:

 

; IF (X = Y) and (A > B) then print “TRUE”

mov ax, X
cmp ax, Y
jne DontDoIt
mov ax, A
cmp ax, B
jng DontDoIt
print
byte “TRUE”,cr,lf,0

DontDoIt:

 

Under normal circumstances, this single comment would be insufficient. It would be a good
idea to explain 

 

why

 

 you are checking to see if X equals Y and A is greater than B. However, this
single comment goes a long way towards demystifying the code which immediately follows it.
As a general rule, you should always place such a comment in your programs before any imple-
mentation of an IF..THEN statement.

 

8.5 What comment should precede the following assembly code?

mov ax, I
cmp ax, J
jne Done
print
byte “Yes”,cr,lf,0

Done:

___________________________________________________________________

___________________________________________________________________

 

As the code in the previous diagram, example, and questions indicates, a typical implemen-
tation of an IF..THEN statement consists of some code to test the desired condition. If the condi-
tion is 

 

false

 

, the code 

 

jumps over

 

 the statements to execute when the condition is true. The true
sequence (those statements following THEN in the IF statement) merges together with the false
flow immediately afterwards.

Do not get the idea that this is the 

 

only 

 

way to deal with a conditional statement. There are
many other possible ways to implement the IF..THEN statement. Consider the following code:

 

; IF I = J THEN print “Yes”

mov ax, I
cmp ax, J
jne SomeWhere
print
byte “Yes”,cr,lf,0
jmp SomeWhere

Here:

 

The false and true code streams will merge back together at the “SomeWhere” label. Unfor-
tunately, “SomeWhere” does not immediately follow the true sequence which tends to confuse
those who would normally expect this. Even though the following code is slightly less efficient
(because the false control flow executes two jumps instead of one), it is a better implementation

 

8.1 The number of alter-
native solutions is over-
whelming and different
programmers choose dif-
ferent solutions to a prob-
lem.
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of the above code because most programmers reading your code will find it easier to read and understand:

 

; IF I = J THEN print “Yes”

mov ax, I
cmp ax, J
jne ItsFalse
print
byte “Yes”,cr,lf,0

ItsFalse:
jmp SomeWhere

 

There is one additional benefit to organizing your code in this fashion: it will be much easier to maintain. Suppose,
for example, that you wanted to print the string “Here I Am” immediately after the IF in both the true and false paths. In
a high level language like Pascal you would simple stick the output statement immediately after the IF..THEN statement.
In the example immediately above, you could stick a call to PRINT immediately before the JMP instruction. In the previ-
ous example, however, you would have to either rewrite the code or go place the print statement at the SomeWhere
label. Neither of these last two alternatives is good if you want the new PRINT statement near the conditional sequence.

You must also pay careful attention to the statements in the true sequence if you want your code to be readable. In
general, all statements which belong to the true sequence should immediately follow the condition test. This might seem
obvious, but assembly language code does not require this to be true. Consider the following code sequence:

 

; IF (X = Y) THEN BEGIN
; A := B;
; X := X + 1;
; Y := Y - 1;
; END;

mov ax, X
cmp ax, Y
jne ItsFalse
mov ax, B
mov A, ax
jmp IncX

FinishTrue: dec Y
ItsFalse:

 .
 .
 .

IncX: inc X
jmp FinishTrue

 

Of course, this example is especially trivial and it would be hard to imagine someone actually writing code in this
fashion but it is not that hard to create a more complex example where you would be tempted to interrupt the flow of
control in exactly this manner. Note, by the way, that the code above is not equivalent to a procedure call. Had the JMP
to IncX been replaced with a procedure call, it would have been perfectly obvious to the casual reader that control
would resume at the DEC instruction. This is not at all clear in the above code. Should there be a reason why you 

 

have

 

 to
write code in this manner, you should place appropriate comments in the code to let the reader know exactly what is
going to happen:

 

mov ax, X
cmp ax, Y
jne ItsFalse
mov ax, B
mov A, ax
jmp IncX ;IncX jumps back to FinishTrue.

FinishTrue: dec Y
ItsFalse:

 

Although the comment above helps the reader understand what is going on, any code written in this fashion will come
under considerable criticism by most programmers and your reputation will be hurt.

This is not to imply that you can have no transfer of control instructions inside the true sequence. There may be
other IFs or loops within the true sequence. What you need to avoid is jumping in and out of the true sequence (proce-
dure calls are an obvious exception to this rule).
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As mentioned earlier, the assembly language code you use to implement the condition test
is very similar to the code you use to compute a boolean expression. You can use short-circuit
evaluation, optimization via DeMorgan’s theorems, and all the other techniques presented in the
last chapter to test the boolean expression. The only component of these test worth further dis-
cussion at this point is the conditional jump which separates the true and false flow of control
paths. Since there are some many synonyms for the various conditional jump instructions, you
should adopt a strict convention concerning their use. By doing so, you can make your pro-
grams easier to read by other programmers who adopt the same convention.

Consider the following Pascal statement:

 

IF ( X < Y ) THEN writeln(‘Hello’);

 

You can implement this in assembly language in at least two different ways:

 

; Method 1:
mov ax, X
cmp ax, Y
jge Done
print
byte “Hello”,cr,lf,0

Done:

; Method 2:
mov ax, X
cmp ax, Y
jnl Done
print
byte “Hello”,cr,lf,0

Done:

 

Since JGE and JNL are synonyms for the same instruction, the two code sequences above pro-
duce exactly the same object code.

Since these two sequences produce the same object code we cannot claim one version is
better because it is faster or shorter. Since they are equally efficient, the other important question
to ask is “Which is easier to read and understand?” There is a very good argument that the sec-
ond version is the easier of the two to understand. Assuming you’ve followed the advice pre-
sented earlier of placing the comment “; IF (X<Y) THEN writeln(‘Hello’);” before the above two
sequences, most people will have an easier time correlating “X < Y” with the JNL instruction than
they will with the “JGE” instruction. While it’s true that JNL is opposite of “X<Y”, it is much easier
to forget the “not” in the instruction than to perform the mental gymnastics necessary to get from
“jump if greater or equal” to “X < Y.” Therefore, when faced with choosing an appropriate
instruction for a conditional test, you should always choose the conditional jump which is the
negation of the condition you want to test. You should read such a sequence as “jump around
the true sequence if the condition is false.”

 

8.6 Convert “IF X >=Y THEN writeln(‘X>=Y’);” to assembly language using
the above convention:

_________________________________ _________________________________

_________________________________ _________________________________

 

8.2 Decisions with the IF..THEN..ELSE Statement

 

The IF..THEN..ELSE statement requires only a minor modification to the IF..THEN statement
described in the previous section. Rather than having the false flow of control merge back with
the true flow of control at the end of the true sequence, the false flow transfers to its own
sequence of instructions.

 

8.2 (X=Y) and (A<B)

8.3 (X=Y) and (A>B)

8.4 Obviously the Pascal
code is easier to under-
stand.

8.5 “IF I=J then print YES”
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By convention, most assembly language programmers organize their IF..THEN..ELSE statements with the true
sequence immediately following the conditional test and the false sequence (the ELSE section) following the true
sequence. Since the true sequence cannot execute the statements in the false sequence, there is usually a jump at the end
of the true sequence which skips to the end of the false code. Pictorially, this appears as follows:

Example:

 

; if (X <> Y) then write(‘Yes’) else write(‘no’);

mov ax, X
cmp ax, Y
je ElsePart
print
byte “Yes”,0
jmp IfDone

ElsePart: print
byte “no”,0

IfDone:

 

As with the simple IF..THEN translations, you really want to keep the true and false sequences together and in the
order shown above. Except for procedure calls and the terminating JMP on the true sequence, you should avoid any
instructions which transfer control out of the true or false sequences.

Test Some Condition

Execute some statement(s) if the
condition evaluates to true

Fall through to the following state-
ment if the condition is true or false

IF..THEN..ELSE  Structure:

Execute  this sequence of instruct-
ions if the condition is false.
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8.3 CASE Statements

 

Most HLLs provide some form of multiway branch capability. The CASE statement in Pascal,
the SWITCH statement in C, ON..GOTO in BASIC, the computed GOTO in FORTRAN, are some
examples of such statements. Although a compiler writer is free to implement these control
structures in whatever manner they like, most compilers use a 

 

jump table

 

 to implement a multi-
way conditional test. 

In assembly language, implementing a multiway test is very simple. You create an array of
addresses, select an element of that array at run time, and jump to the selected address. Each
address in the array must point at a sequence of instructions associated with the index into the
array of addresses. To execute the selection operation you use the value of the CASE expression
as an index into the array, fetch the specified address, and jump to it:

 

mov bx, CaseValue
shl bx, 1
mov bx, cs:Array[bx]
jmp bx

Array word Stmt0, Stmt1, Stmt2, ...

 

CaseValue represents the ultimate result of a CASE expression. The SHL instruction multi-
plies BX by two since Array is an array of words. The “MOV BX, cs:Array[BX]” instruction loads
BX with the desired element of the array. The JMP instruction transfer control to this target loca-
tion. Note that the last two instructions are written this way to emphasize the array access. In
fact, you could combine the last to instructions into a single instruction: “JMP cs:Array[BX]”.

 

8.7 If you wanted to use double word addresses rather than word
addresses, how would you rewrite the code above?

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

 

As you might expect from the examples presented in the sections on IF..THEN and
IF..THEN..ELSE, you can organize the code for a CASE statement in many different ways. How-
ever, some forms are better than others if you care about readable code. In general, suppose you
have a CASE statement in Pascal which takes the form:

 

case i of
0: stmt

 

0

 

;
1: stmt

 

1

 

;
2: stmt

 

2

 

;
    .
    .
    .
n: stmt

 

n

 

;
otherwise stmt

 

n+1

 

;
end;

 

Given this arrangement you should organize the assembly code in a similar fashion. That is, your
assembly code should begin with the indirect jump code and the table of addresses. Following
this should be the code for STMT

 

0

 

 followed by a jump to the first statement beyond the OTHER-
WISE sequence. Converted to assembly code, the above sequence, sans the otherwise clause,
might look like the following:

 

mov bx, i
shl bx, 1
jmp cs:CaseTbl[bx]

CaseTbl word Stmt0, Stmt1, Stmt2, ..., Stmtn

 

8.6

 

mov ax, X
cmp ax, Y
jnge Done
print
byte “X>-Y”
byte cr,lf,0
Done:
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Stmt0: <Code for Stmt0 goes here>
jmp CaseDone

Stmt1: <Code for Stmt1 goes here>
jmp CaseDone

Stmt2: <Code for Stmt2 goes here>
jmp CaseDone
 .
 .
 .

Stmtn: <Code for Stmtn goes here>
CaseDone:

 

Before considering the OTHERWISE section of the case statement, there are two important details to discuss in the
above code. First, note the “CS:” prefix on the CaseTbl label in the JMP instruction. In general, it’s best to place the jump
table immediately after the JMP instruction so other can easily determine the destination targets of the jump. Since this is
in the code segment and DS generally won’t be pointing at your code segment, you may need to use the CS: override. Of
course, you could place the CaseTbl array in the data segment and avoid the cost of the segment override prefix, but that
introduces problems of its own. For readability and other reasons you should generally try to place the array of target

addresses after the JMP instruction. Hence you will typically have a “CS:” prefix on the array name

 

1

 

A second problem with the CASE statement occurs if the case value is out of range. 

 

Standard

 

 Pascal claims the result
is undefined if “i” in the previous CASE statement does not have a corresponding case value. The reason is obvious when
you look at the jump table implementation of a CASE statement. If there are only cases 0, 1, 2, and 3 in the case statement
and the case value is four, the jump table code will jump to the address specified by the two bytes just beyond the end of
the table. This is exactly what the Pascal standard means when it says the result is undefined. Who knows what the value
of those two bytes are going to be?

The OTHERWISE clause is an extension to Pascal to handle this problem. If the value of the CASE expression does
not appear as a case label, most modern Pascals will do one of two things, they will either continue execution with the
first statement beyond the CASE’s END or they will transfer control to the statement after the OTHERWISE clause, if
present. There are three possibilities the CASE statement must handle- the case value is less than the smallest case label,
the case value is larger than the largest case label, or the case value is a “hole” in the list of case values. A simple
IF..THEN test before the CASE can handle the first two cases, filling in the holes in the jump table with the address of the
otherwise clause handles the last case. As an example, consider the following Pascal code:

 

case i of
3: write(n);
5: write(i);
7: write(j);
9: write(k);
otherwise writeln(‘error’);

end;

 

The assembly code you could use for this might be:

 

mov bx, i
cmp bx, 3
jl Otherwise
cmp bx, 9
jg Otherwise
shl bx, 1
jmp cs:jmptbl-6[bx]

jmptbl word Stmt3, Otherwise, Stmt5, Otherwise, Stmt7
word Otherwise, Stmt9

Stmt3: mov ax, n
puti
jmp CaseDone

 

1. Actually, if you have an appropriate ASSUME directive, the “CS:” prefix is not necessary, the assembler will automatically add one for you. How-
ever, it’s generally a good idea to explicitly place this segment prefix in your code.
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Stmt5: mov ax, i
puti
jmp CaseDone

Stmt7: mov ax, j
puti
jmp CaseDone

Stmt9: mov ax, k
puti
jmp CaseDone

Otherwise: print
byte “Error”,cr,lf,0

CaseDone:

 

8.8 What would be wrong with implementing a CASE statement like the fol-
lowing using the above technique?

case i of

1: write(i);

100: writeln(‘2’);

1000: writeln(‘3’);

otherwise writeln(‘Not 1, 100, or 1000.’);

end;

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

 

The big advantage of the jump table implementation for a CASE statement is that it executes
in a constant amount of time, regardless of the number of case labels or the value of the case
expression. As the question above demonstrates, however, there may be a problem with the
amount of memory that this implementation uses. Fortunately, you can substitute an
IF..THEN..ELSE..IF... construct if the jump table grows too large.

 

8.4 Loops

 

After the conditional sequences, loop sequences are the most common in a program. In var-
ious high level languages there are three generic types of loops- those with a test at the begin-
ning, in the middle, and at the end of the loop. Following the Pascal/Ada/Modula 2 lead we will
refer to these as WHILE loops, LOOP..ENDLOOPs, and REPEAT..UNTIL loops. A fourth common

loop construct appearing in HLLs, the FOR loop, is really a special case of the WHILE loop

 

2

 

.

To create a loop in an assembly language program is very easy. Any sort of jump instruction
which transfers control to a part of your program which you’ve already executed can form a
loop. As with the IF..THEN..ELSE and CASE statements, however, it makes a lot of sense to simu-
late as closely as possible the loop constructs found in HLLs.

The WHILE loop consists of a termination test, a loop body, and a JMP back to the termina-
tion test. Graphically, the WHILE loop looks like the following:

 

2. There are other types of loop constructs as well. For example, in Chapter Nine you will learn about iterators and the
FOREACH loop.

 

8.7

 

mov bx, CaseVal
shl bx, 2
jmp cs:Array
Array dword Stmt0

dword Stmt1
 .
 .
 .
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As you can see from the diagram, this is simply an IF..THEN structure with a JMP following the true sequence which
takes you back to the conditional test. The following is an example of a Pascal WHILE loop and the corresponding
assembly code:

 

while (X < Y) and (A = B) do begin
 .
 .
 .
X := X + 1;

end;

WhileLp: mov ax, X
cmp ax, Y
jnl WhlDone
mov ax, A
cmp ax, B
jne WhlDone
 .
 .
 .
inc X
jmp WhlLoop

WhlDone:

 

8.9 There is only one instruction in the above sequence which makes this sequence different
from the IF..THEN sequence. What is that statement?

______________________________________________________________________________________

 

The LOOP..ENDLOOP construct is very similar to the WHILE loop except that there are usually statements in the
loop prior to the termination test. In the code above, this would correspond to some statements between the WhileLp
label and the “MOV AX, X” instruction. Graphically, it looks like the following:

Test Some Condition

Execute some statement(s) if the
condition evaluates to true

Fall through to the following state-
ment if the condition is false

While  Structure:



 

Control Structures

Lab 8-363

 

8.10 In terms of the assembly code you would write for a LOOP..ENDLOOP
structure, what is the difference between a WHILE loop and a
LOOP..ENDLOOP? __________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

 

The following short pseudo-Pascal segment and accompanying assembly code demonstrate
the translation of a LOOP..ENDLOOP statement:

 

LOOP
write(‘Enter an integer (0 quits):’);
readln(i);
if i=0 then break; {break means exit loop}
writeln(‘You entered ‘,i);

ENDLOOP;

Test Some Exit Condition

Execute some statement(s) if the
condition evaluates to false

Fall through to the following state-
ment if the condition is false

LOOP..ENDLOOP  Structure:

Execute some statements regardless
of the termination condition.

 

8.8 The resulting table
would be too large.
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LoopEntry: print
byte “Enter an integer (0 quits):”,0
getsm ;Read a line of text
atoi ;Convert to an integer
free ;Free memory malloc’d by GETSM

cmp ax, 0 ;Termination test.
je LoopDone

print
byte “You entered “,0
puti
putcr
jmp LoopEntry

LoopDone:

 

The LOOP..ENDLOOP construct is the most general. You can construct any of the other three loops (plus the Pascal
FOR loop) using nothing more than a LOOP..ENDLOOP. To create a WHILE loop, for example, you would simply put
the termination test at the beginning of the loop.

 

8.11 How would you create a REPEAT..UNTIL loop using the LOOP..ENDLOOP construct?

_____________________________________________________________________________________

_____________________________________________________________________________________

_____________________________________________________________________________________

_____________________________________________________________________________________

 

The REPEAT..UNTIL loop turns out to be the easiest loop construct to generate in assembly language. Graphically, it
takes the following form:

The simplification which exists here is the fact that the loop termination test, which occurs at the bottom of the
REPEAT..UNTIL loop replaces the extra JMP instruction which is necessary for the WHILE and LOOP..ENDLOOP state-
ments. Since there is one less JMP instruction in the loop, the code runs marginally faster. For this reason, many program-
mers attempt to convert all loops to REPEAT..UNTIL loops. The basic idea is outlined in the textbook and will not be
repeated here since we’re more interested in function rather than efficiency at this point.

Execute some statement(s)

Test a termination condition,
repeat statements while false

Fall through to the following state-
ment if the condition is true

Repeat..Until Structure:
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As with the IF..THEN {..ELSE} and CASE statements, there are a number of ways you can
implement these three types of loops in an assembly language program. However, if you stick to
the templates given for the above three types of loops, you will find your programs are much
easier to read, maintain, and debug. You should strive to maintain a single entry point and a sin-
gle exit point in all your control structures. This does not necessarily produce the fastest or the
shortest code. However, you should learn to write 

 

correct

 

 code before you worry about writing

 

fast 

 

or 

 

short

 

 code. Once you’ve gotten your program(s) to work, you can worry about perfor-
mance or size problems.

 

8.5 FOR Loops

 

Although the FOR loop is really nothing more than a special case of the WHILE loop, it is
one of the more commonly used loops in high level languages. Indeed, the FOR loop (or its
counterpart) is the only loop available in many languages include (standard) BASIC and older
versions FORTRAN. Since it is so commonly used, it makes sense to spend a little time discussing
various implementations of FOR in assembly language.

There are three common uses of the FOR loop which deserve special attention:

• Repeating a sequence of statements some fixed number of times and the body of
the loop always executes at least once. The statements in the body do not refer to
the FOR loop control variable, the only reason for using FOR is to easily control
the number of executions.

• Repeating a loop a fixed number of times (at least once) and the statements in the
body of the loop 

 

do

 

 refer to the value of the loop control variable.
• Repeating a loop some arbitrary number of times (including not at all).

In the first case above, the program wants to execute a sequence of statements a fixed num-
ber of times (say, 10) and uses the FOR loop to accomplish this. No other features of the FOR
loop are necessary for proper execution. The easiest way to accomplish this, if the loop body is
short (less than 128 bytes) is to use the 80x86 LOOP instruction. Simply load CX with the number
of iterations and let it run:

 

mov cx, 10
TenTimes: print

byte “Print this 10 times”,cr,lf,0
loop TenTimes

 

If the loop body needs to refer to the loop control variable, yet executes a fixed number of
times, you can still use the LOOP instruction. For example, the following loop zeros out an array
of words using the value in BX as the loop control variable and the value in CX to control the
number of iterations:

 

mov cx, 10 ;Ten iterations
mov bx, 0 ;Loop control var
mov ax, 0 ;Value to init array

TenTimes: mov Array[bx], ax
add bx, 2 ;On to next element
loop TenTimes

 

Note in both of the above cases the loop works like a REPEAT..UNTIL loop since the test is
at the bottom of the loop. Since the loop executes a fixed number of times and always executes
at least once, this is still correct.

The general case does not allow you to use a REPEAT..UNTIL structure. It is quite possible
for the FOR loop to skip over the loop body without executing it at all. Therefore, you must use
a WHILE loop if you have no idea what the starting and ending values for the loop will be. Con-
sider the following Pascal FOR loop:

 

FOR i := j to k do 

 

statement

 

8.9 The “JMP WhlLoop”
instruction at the end of
the loop code.

8.10 Only the position of
the loop termination code. 
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8.12 Under what condition(s) will the above FOR loop 

 

not

 

 execute the associated statement?

______________________________________________________________________________________

______________________________________________________________________________________

 

This FOR loop is roughly equivalent to the following WHILE statement

 

3

 

i := j;
while (i <= k) do begin

 

statement

 

i := i + 1;

end;

 

Since you’ve already seen how to convert a WHILE loop into assembly language, you automatically know how to
convert the above FOR loop into assembly given this translation to a WHILE loop. The assembly code is

 

; FOR i := j to k do 

 

statement

 

mov ax, j
mov i, ax

ForLoop: mov ax, i
cmp ax, k
jnle EndFor
<Code for 

 

Statement 

 

goes here>
inc I
jmp ForLoop

 

Most programmers will try to use a register for the loop control variable. Assuming you could use DX in the above loop,
you’d wind up with a slightly more efficient piece of code:

 

; for dx := j to k do 

 

statement

 

mov dx, j
ForLoop: cmp dx, k

jnle EndFor
<Code for Statement goes here>
inc dx
jmp ForLoop

8.13 Rewrite the code above for the statement “for i := j downto k do statement;” (hint: you need
only change two lines).

__________________________________________ __________________________________________

__________________________________________ __________________________________________

__________________________________________ __________________________________________

8.6 Nested Statements

As long as you stick to the templates provides in the examples presented in this chapter, it is very easy to nest state-
ments inside one another. The secret to making sure your assembly language sequences nest well is to ensure that each
construct has one entry point and one exit point. If this is the case, then you will find it easy to combine statements. All of
the statements discussed in this chapter follow this rule.

Perhaps the most commonly nested statements are the IF..THEN..ELSE statements. To see how easy it is to nest
these statements in assembly language, consider the following Pascal code:

3. Roughly equivalent because many Pascal compilers can more easily optimize the FOR loop and often generate different code for it.
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if (x = y) then
if (I >= J) then writeln(‘At point 1’)
else writeln(‘At point 2)

else write(‘Error condition’);

To convert this nested IF..THEN..ELSE to assembly language, start with the outermost IF, convert
it to assembly, then work on the innermost IF:

; if (x = y) then

mov ax, X
cmp ax, Y
jne Else0

; Put innermost IF here

jmp IfDone0

; Else write(‘Error condition’);

Else0: print
byte “Error condition”,0

IfDone0:

As you can see, the above code handles the “if (X=Y)...” instruction, leaving a spot for the sec-
ond IF. Now add in the second IF as follows:

; if (x = y) then

mov ax, X
cmp ax, Y
jne Else0

; IF ( I >= J) then writeln(‘At point 1’)

mov ax, I
cmp ax, J
jnge Else1
print
byte “At point 1”,cr,lf,0
jmp IfDone1

; Else writeln (‘At point 2’);

Else1: print
byte “At point 2”,cr,lf,0

IfDone1:

jmp IfDone0

; Else write(‘Error condition’);

Else0: print
byte “Error condition”,0

IfDone0:

The nested IF appears in italics above just to help it stand out.

There is an obvious optimization which you do not really want to make until speed
becomes a real problem. Note in the innermost IF statement above that the “JMP IFDONE1”
instructions simply jumps to a JMP instruction which transfers control to IFDONE0. It is very
tempting to replace the first JMP by one which jumps directly to IFDone0. Indeed, when you go
in and optimize your code, this would be a good optimization to make. However, you shouldn’t
make such optimizations to your code unless you really need the speed. Doing so makes your
code harder to read and understand. Remember, we would like all our control structures to have

8.11 Place the loop termi-
nation test just before the
ENDLOOP.
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one entry and one exit. Changing this jump as described would give the innermost IF statement two exit points.

The FOR loop is another commonly nested control structure. Once again, the key to building up nested structures is
to construct the outside object first and fill in the inner members afterwards. As an example, consider the following
nested FOR loops which add the elements of a pair of two dimensional arrays together:

for i := 0 to 7 do
for k := 0 to 7 do

A [i,j] := B [i,j] + C [i,j];

As before, begin by constructing the outermost loop first. This code assumes that DX will be the loop control vari-
able for the outermost loop (that is, DX is equivalent to “i”):

; for dx := 0 to 7 do

mov dx, 0
ForLp0: cmp dx, 7

jnle EndFor0

; Put innermost FOR loop here

inc dx
jmp ForLp0

EndFor0:

Now add the code for the nested FOR loop. Note the use of the CX register for the loop control variable on the innermost
FOR loop of this code.

; for dx := 0 to 7 do

mov dx, 0
ForLp0: cmp dx, 7

jnle EndFor0

; for cx := 0 to 7 do 

mov cx, 0
ForLp1: cmp cx, 7

jnle EndFor1

; Put code for A[dx,cx] := b[dx,cx] + C [dx,cx] here

inc cx
jmp ForLp1

EndFor1:

inc dx
jmp ForLp0

EndFor0:

Once again the innermost FOR loop is in italics in the above code to make it stand out. The final step is to add the code
which performs that actual computation:

8.14 Supply the code to compute “Aa[dx,cx] := Ba[dx,cx] + Ca[dx, cx];” Assume the arrays are all
declared as “Aa, Ba, Ca: array [0..7, 0..7] of integer;”

__________________________________________ __________________________________________

__________________________________________ __________________________________________

__________________________________________ __________________________________________

__________________________________________ __________________________________________

__________________________________________ __________________________________________
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8.7 Timing Delay Loops

Most of the time the computer runs too slow for most people’s tastes. However, there are
occasions when it actually runs too fast. One common solution is to create an empty loop to
waste a small amount of time. In Pascal you will commonly see loops like:

for i := 1 to 10000 do ;

In assembly, you might see a comparable loop:

mov cx, 8000h
DelayLp: loop DelayLp

By carefully choosing the number of iterations, you can obtain a relatively accurate delay
interval. There is, however, one catch. That relatively accurate delay interval is only going to be
accurate on your machine. If you move your program to a different machine with a different
CPU, clock speed, number of wait states, different sized cache, or half a dozen other features,
you will find that your delay loop takes a completely different amount of time. Since there is bet-
ter than a hundred to one difference in speed between the high end and low end PCs today, it
should come as no surprise that the loop above will execute 100 times faster on some machines
than on others. 

The fact that one CPU runs 100 times faster than another does not reduce the need to have a
delay loop which executes some fixed amount of time. Indeed, it makes the problem that much
more important. Fortunately, the PC provides a hardware based timer which operates at the
same speed regardless of the CPU speed. This timer maintains the time of day for the operating
system, so it’s very important that it run at the same speed whether you’re on an 8088 or a Pen-
tium. In the chapter on interrupts you will learn to actually patch into this device to perform var-
ious tasks. For now, we will simply take advantage of the fact that this timer chip forces the CPU
to increment a 32-bit memory location (40:6ch) about 18.2 times per second. By looking at this
variable we can determine the speed of the CPU and adjust the count value for an empty loop
accordingly. 

The basic idea of the following code is to watch the BIOS timer variable until it changes.
Once it changes, start counting the number of iterations through some sort of loop until the BIOS
timer variable changes again. Having noted the number of iterations, if you execute a similar
loop the same number of times it should require about 1/18.2 seconds to execute.

The following program demonstrates how to create such a Delay routine:

.xlist
include stdlib.a
includelibstdlib.lib
.list

; PPI_B is the I/O address of the keyboard/speaker control
; port. This program accesses it simply to introduce a
; large number of wait states on faster machines. Since the
; PPI (Programmable Peripheral Interface) chip runs at about
; the same speed on all PCs, accessing this chip slows most
; machines down to within a factor of two of the slower
; machines.

PPI_B equ 61h

; RTC is the address of the BIOS timer variable (40:6ch).
; The BIOS timer interrupt code increments this 32-bit
; location about every 55 ms (1/18.2 seconds). The code
; which initializes everything for the Delay routine
; reads this location to determine when 1/18th seconds
; have passed.

RTC textequ <es:[6ch]>

8.12 If J is greater than K
upon encountering the
FOR loop.

8.13 

mov dx, j
ForLoop:
cmp dx, k
jnge EndFor
<Code goes here>
dec dx
jmp ForLoop
EndFor
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dseg segment para public ‘data’

; TimedValue contains the number of iterations the delay
; loop must repeat in order to waste 1/18.2 seconds.

TimedValue word 0

; RTC2 is a dummy variable used by the Delay routine to
; simulate accessing a BIOS variable.

RTC2 word 0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Main program which tests out the DELAY subroutine.

Main proc
mov ax, dseg
mov ds, ax

print
byte “Delay test routine”,cr,lf,0

; Okay, let’s see how long it takes to count down 1/18th
; of a second. First, point ES as segment 40h in memory.
; The BIOS variables are all in segment 40h.
;
; This code begins by reading the memory timer variable
; and waiting until it changes. Once it changes we can
; begin timing until the next change occurs. That will
; give us 1/18.2 seconds. We cannot start timing right
; away because we might be in the middle of a 1/18.2
; second period.

mov ax, 40h
mov es, ax
mov ax, RTC

RTCMustChange: cmp ax, RTC
je RTCMustChange

; Okay, begin timing the number of iterations it takes
; for an 18th of a second to pass. Note that this
; code must be very similar to the code in the Delay
; routine.

mov cx, 0
mov si, RTC
mov dx, PPI_B

TimeRTC: mov bx, 10
DelayLp: in al, dx

dec bx
jne DelayLp
cmp si, RTC
loope TimeRTC

neg cx ;CX counted down!
mov TimedValue, cx ;Save away

mov ax, ds
mov es, ax

printf
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byte “TimedValue = %d”,cr,lf
byte “Press any key to continue”,cr,lf
byte “This will begin a delay of five “
byte “seconds”,cr,lf,0
dword TimedValue

getc

mov cx, 90
DelayIt: call Delay18

loop DelayIt

Quit: ExitPgm ;DOS macro to quit program.
Main endp

; Delay18-This routine delays for approximately 1/18th sec.
;  Presumably, the variable “TimedValue” in DS has 
;  been initialized with an appropriate count down 
;  value before calling this code.

Delay18 proc near
push ds
push es
push ax
push bx
push cx
push dx
push si

mov ax, dseg
mov es, ax
mov ds, ax

; The following code contains two loops. The inside
; nested loop repeats 10 times. The outside loop
; repeats the number of times determined to waste
; 1/18.2 seconds. This loop accesses the hardware
; port “PPI_B” in order to introduce many wait states
; on the faster processors. This helps even out the
; timings on very fast machines by slowing them down.
; Note that accessing PPI_B is only done to introduce
; these wait states, the data read is of no interest
; to this code.
;
; Note the similarity of this code to the code in the
; main program which initializes the TimedValue variable.

mov cx, TimedValue
mov si, es:RTC2
mov dx, PPI_B

TimeRTC: mov bx, 10
DelayLp: in al, dx

dec bx
jne DelayLp
cmp si, es:RTC2
loope TimeRTC

pop si
pop dx
pop cx
pop bx
pop ax
pop es
pop ds
ret

Delay18 endp

8.14 

mov bx, dx
shl bx, 3
add bx, cx
shl bx, 1
mov ax, Ba[bx]
add ax, Ca[bx]
mov Aa[bx]. ax
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cseg ends

sseg segment para stack ‘stack’
stk word 1024 dup (0)
sseg ends

end Main

8.8 The 8253/8254 Timer Chip

PCs contain a special integrated circuit which produces a period signal. This chip (an Intel compatible 8253 or 8254,

depending on your particular computer4) contains three different 16-bit counter/timer circuits. The PC uses one of these
timers to generate the 1/18.2 second real time clock mentioned in the previous section. It uses the second of these timers

to control the DMA refresh on main memory5. The third timer circuit on this chip is connected to the PC’s speaker. The
PC uses this timer to produces beeps, tones, and other sounds. The RTC timer will be of interest to us in a later chapter.
The DMA timer, if present on your PC, isn’t something you should mess with. The third timer, connected to the speaker,
is the subject of this section.

8.8.1 The Physics of Sound

Sounds you hear are the result of vibrating air molecules. When air molecules quickly vibrate back and forth
between 20 and 20,000 times per second, we interpret this as some sort of sound. A speaker is a device which vibrates air
in response to an electrical signal. That is, it converts an electric signal which alternates between 20 and 20,000 times per
second (Hz) to an audible tone. Alternating a signal is very easy on a computer, all you have to do is apply a logic one to
an output port for some period of time and then write a logic zero to the output port for a short period. Then repeat this
over and over again. A plot of this activity over time might look like the following:

4. Most modern computers don’t actually have an 8253 or 8254 chip. Instead, there is a compatible device built into some other VLSI chip on the
motherboard.
5. Many modern computer systems do not use this timer for this purpose and, therefore, do not include the second timer in their chipset.

Voltage on
output port

Time

Logic 1

Logic 0

One Clock Period

Note: Frequency is equal to the recipricol of the clock period.   Audible sounds are between 20 and 20,000 Hz.

Input an alternating electrical signal
to the speaker.

The speaker
responds by
pushing the
air in an out
according to
the electrical
signal.
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8.15 Suppose you supplied a 440 Hz electrical signal to the speaker. What
would the frequency of the audible tone be? ________________________

Although many humans are capable of hearing tones in the range 20-20Khz, the PC’s
speaker is not capable of faithfully reproducing the tones in this range. It works pretty good for
sounds in the range 100-10Khz, but the volume drops off dramatically outside this range. Fortu-
nately, this lab only requires frequencies in the 110-2,000 hz range; well within the capabilities of
the PC speaker.

8.8.2 The Fundamentals of Music

In this laboratory you will use the timer chip and the PC’s built-in speaker to produce musi-
cal tones. To produce true music, rather than annoying tones, requires a little knowledge of
music theory. This section provides a very brief introduction to the notation musicians use. This
will help you when you attempt to convert music in standard notation to a form the computer
can use.

Western music tends to use notation based on the alphabetic letters A…G. There are a total

of 12 notes designated A, A#, B, C, C#, D, D#, E, F, F#, G, and G#6. On a typical musical instru-
ment these 12 notes repeat over and over again. For example, a typical piano might have six rep-
etitions of these 12 notes. Each repetition is an octave. An octave is just a collection of 12 notes, it
need not necessarily start with A, indeed, most pianos start with C. Although there are, techni-
cally, about 12 octaves within the normal hearing range of adults, very little music uses more
than four or five octaves. In the laboratory, you will implement four octaves.

Written music typically uses two staffs. A staff is a set of five parallel lines. The upper staff is
often called the treble staff and the lower staff is often called the bass staff. They generally look
like the following:

A musical note, as the notation to the side of the staffs above indicates, appears both on the
lines of the staffs and the spaces between the staffs. The position of the notes on the staffs deter-
mine which note to play, the shape of the note determines its duration. There are whole notes,

half notes, quarter notes, eighth notes, sixteenth notes, and thirty-second notes7. Note durations
are specified relative to one another. So a half note plays for one-half the time of a whole note, a
quarter note plays for one-half the time of a half note (one quarter the time of a whole note), etc.
In most musical passages, the quarter note is generally the basis for timing. If the tempo of a par-
ticular piece is 100 beats per second this means that you play 100 quarter notes per second.

The duration of a note is determined by its shape as follows:

6. The notes with the “#” (pronounced sharp) correspond to the black keys on the piano. The other notes correspond
to the white keys on the piano. Note that western music notation also describes flats in addition to sharps. A# is equal
to Bb (b denotes flat), C# corresponds to Db, etc. Technically, B is equivalent to Cb and C is equivalent to B# but you
will rarely see musicians refer to these notes this way.
7. The only reason their aren’t shorter notes is because it would be hard to play one note which is 1/64th the length of
another.

F
D
B
G
E

E
C
A
F
D

B
G
E
C
A

A
F
D
B
G

Middle C
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In addition to the notes themselves, there are often brief pauses in a musical passage when there are no notes being
played. These pauses are known as rests. Since there is nothing audible about them, only their duration matters. The
duration of the various rests is the same as the normal notes; there are whole rests, half rests, quarter rests, etc. The sym-
bols for these rests are the following:

This is but a brief introduction to music notation. Barely sufficient for those without any music training to convert a
piece of sheet music into a form suitable for a computer program. If you are interested in more information on music
notation, the library is a good source of information on music theory. The following example is an adaptation of the
hymn “Amazing Grace”. There are two things to note here. First, there is no bass staff, just two treble staffs. Second, the
sharp symbol on the “F” line indicates that this song is played in “G-Major” and that all F notes should be F#. There are no

F notes in this song, so that hardly matters8.

8.16 What is the sequence of notes (read from left to right, top to bottom) in the above song?

_____________________________________________________________________________________

_____________________________________________________________________________________

_____________________________________________________________________________________

8. In the full version of the song there are F notes on the base clef.

Whole Half Quarter Eighth Sixteenth Thirty-Second
Note Note Note Note Note Note

Whole
Rest

Half
Rest

Quarter
Rest

Eighth
Rest

Sixteenth
Rest

Thirty-Second
Rest

#

#

Amazing Grace.  John Newton, John Rees, Edwin Excell
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8.17 What are the relative timings (durations) of each of the above notes and
rests? _____________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

8.8.3 The Physics of Music

Each musical note corresponds to a unique frequency. The A above middle C is generally
440 Hz (this is known as concert pitch since this is the frequency orchestras tune to). The A one
octave below this is at 220 Hz, the A above this is 880Hz. In general, to get the next higher A you
double the current frequency, to get the previous A you halve the current frequency. To obtain
the remaining notes you multiply the frequency of A with a multiple of the twelfth root of two.
For example, to get A# you would take the frequency for A and multiply it by the twelfth root of
two. Repeating this operation yields the following (truncated) frequencies for four separate
octaves:

Notes: The number following each note denotes its octave. In the chart above, middle C is C1.

You can generate additional notes by halving or doubling the notes above. For example, if
you really need A(-1) (the octave below A0 above), dividing the frequency of A0 by two yields
55Hz. Likewise, if you want E4, you can obtain this by doubling E3 to produce 2638 Hz. Keep in
mind that the frequencies above are not exact. They are rounded to the nearest integer because
we will need integer frequencies in this lab.

8.18 What would the frequency be for the E below E0? ____________________

8.19 What would the frequency be for E4? ________________________________

Note Frequency Note Frequency Note Frequency Note Frequency

A 0 110 A 1 220 A 2 440 A 3 880

A # 0 117 A # 1 233 A # 2 466 A # 3 932

B 0 123 B 1 247 B 2 494 B 3 988

C 0 131 C 1 262 C 2 523 C 3 1047

C # 0 139 C # 1 277 C # 2 554 C # 3 1109

D 0 147 D 1 294 D 2 587 D 3 1175

D # 0 156 D # 1 311 D # 2 622 D # 3 1245

E 0 165 E 1 330 E 2 659 E 3 1319

F 0 175 F 1 349 F 2 698 F 3 1397

F # 0 185 F # 1 370 F # 2 740 F # 3 1480

G 0 196 G 1 392 G 2 784 G 3 1568

G # 0 208 G # 1 415 G # 2 831 G # 3 1661

8.15 440 hz.
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8.8.4 Programming the Timer Chip to Produce Musical Tones

As mentioned earlier, one of the channels on the PC programmable interval timer (PIT) chip is connected to the PC’s
speaker. To produce a musical tone we need to program this timer chip to produce the frequency of some desired note
and then activate the speaker. Once you initialize the timer and speaker in this fashion, the PC will continuously produce
the specified tone until you disable the speaker.

To activate the speaker you must set bits zero and one of the “B Port” on the PC’s 8255 Programmable Peripheral
Interface (PPI) chip. Port B of the PPI is an eight-bit I/O device located at I/O address 61h. You must use the IN instruc-
tion to read this port and the OUT instruction to write data back to it. You must preserve all other bits at this I/O address.
If you modify any of the other bits, you will probably cause the PC to malfunction, perhaps even reset. The following
code shows how to set bits zero and one without affecting the other bits on the port:

in al, PPI_B ;PPI_B is equated to 61h
or al, 3 ;Set bits zero and one.
out PPI_B, al

Since PPI_B’s port address is less than 100h we can access this port directly, we do not have to load its port address into
DX and access the port indirectly through DX.

To deactivate the speaker you must write zeros to bits zero and one of PPI_B. The code is similar to the above
except you force the bits to zero rather than to one.

8.20 What instruction do you use to force bits zero and one to zero? __________________________

8.21 What is the code which will deactivate the speaker?

______________________________________________________________________________________

______________________________________________________________________________________

______________________________________________________________________________________

Manipulating bits zero and one of the PPI_B port let you turn on and off the speaker. It does not let you adjust the
frequency of the tone the speaker produces. To do this you must program the PIT at I/O addresses42h and 43h. To
change the frequency applied to the speaker you must first write the value 0B6h to I/O port 43h (the PIT control word)
and then you must write a 16-bit frequency divisor to port 42h (timer channel two). Since the port is only an eight-bit
port, you must write the data using two successive OUT instructions to the same I/O address. The first byte you write is
the L.O. byte of the divisor, the second byte you write is the H.O. byte.

To compute the divisor value, you must use the following formula:

For example, the divisor for the A above middle C (440 Hz) is 1,193,180/440 or 2,712 (rounded to the nearest integer). To
program the PIT to play this note you would execute the following code:

mov al, 0B6h ;Control word code
out PIT_CW, al ;Write control word.
mov al, 98h ;2712 is 0A98h.
out PIT_Ch2, al ;Write L.O. byte
mov al, 0ah
out PIT_Ch2, al ;Write H.O. byte

Assuming that you have activated the speaker, the code above will produce the A note until you deactivate the speaker
or reprogram the PIT with a different divisor.

8.22 What is the divisor value for Middle C? ________________________________________________

1193180
Frequency
---------------------------- Divisor=
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8.8.5 Putting it All Together

To create music you will need to activate the speaker, program the PIT, and then delay for
some period of time while the note plays. At the end of that period, you need to reprogram the
PIT and wait while the next note plays. If you encounter a rest, you need to deactivate the
speaker for the given time interval. The key point is this time interval. If you simply reprogram
the PPI and PIT chips at microprocessor speeds, your song will be over and done with in just a
few microseconds. Far to fast to hear anything. Therefore, we need to use a delay, such as the
software delay code presented earlier, to allow us to hear our notes.

A reasonable tempo is between 80 and 120 quarter notes per second. This means you
should be calling the Delay18 routine between 9 and 14 times for each quarter note. A reason-
able set of iterations is 

• three times for sixteenth notes,
• six times for eighth notes,
• twelve times for quarter notes,
• twenty-four times for half notes, and
• forty-eight times for whole notes.

Of course, you may adjust these timings as you see fit to make your music sound better. The
important parameter is the ratio between the different notes and rests, not the actual time.

Since a typical piece of music contains many, many individual notes, it doesn’t make sense
to reprogram the PIT and PPI chips individually for each note. Instead, you should write a proce-
dure into which you pass a divisor and a count down value. That procedure would then play
that note for the specified time and then return. Assuming you call this procedure PlayNote and it
expects the divisor in AX and the duration (number of times to call Delay18) in CX, you could
use the following macro to easily create songs in your programs:

Note macro divisor, duration
mov ax, divisor
mov cx, duration
call PlayNote
endm

The following macro lets you easily insert a rest into your music:

Rest macro Duration
local LoopLbl
mov cx, Duration

LoopLbl: call Delay18
loop LoopLbl
endm

Now you can play notes by simply stringing together a list of these macros with the appropriate
parameters.

The only problem with this approach is that it is different to create songs if you must con-
stantly supply divisor values. You’ll find music creation to be much simpler if you could specify
the note, octave, and duration rather than a divisor and duration. This is very easy to do. Simply
create a lookup table using the following definition:

Divisors: array [Note, Sharp, Octave] of word;

Where Note is ‘A’;..”G”, Sharp is true or false (1 or 0), and Octave is 0..3. Each entry in the table
would contain the divisor for that particular note.

8.16 D G B G B A G E D D
G B G B A D

B D B D B G D E G G E D
D G B G B A G

8.17 Let 8=1/8th note or
rest, 4= 1/4 note, 2=1/2
note, and 1=whole note.

4 2 8 8 2 4 2 4 2 8 42 8 8 2
4 1

4 4 8 8 8 2 4 4 8 8 8 8 2 8 4
2 8 8 2 4 1

8.18 82.5 hz (83)

8.19 About 2638 Hz.
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8.23 This array is a 7 x 2 x 4 array of words. What is the formula you would use to access Divi-
sors [I,J,K] assuming row major ordering?

_____________________________________________________________________________________

8.24 Assuming AL contains I (‘A’..’G’), AH contains J (0..1), and BL contains K (0..3) provide the
code which would load the value of DIVISORS [I,J,K] into AX:

__________________________________________ __________________________________________

__________________________________________ __________________________________________

__________________________________________ __________________________________________

__________________________________________ __________________________________________

__________________________________________ __________________________________________

8.9 Before Coming to the Laboratory

Your pre-lab report should contain the following:

• A copy of this lab guide chapter with all the questions answered and corrected.
• A write-up describing the theory of sound and music and how we use the PIT and PPI chips to generate

music.
• A table containing divisor values for all the notes in the four octaves presented in this chapter.
• Some sheet music or music in some other form which you can provide as input to your program.
• Source code, debugged and tested, which contains the Delay18 routine presented in this chapter (the

Delay18 routine is supplied on the diskette accompanying this lab manual), the PlayNote routine, and the
PlayRest routine. The PlayNote routine should be the version which accepts the Note (A..G), Sharp, and
Octave parameters.

• A sequence of calls to PlayNote/PlayRest (perhaps via macros) which play your musical selection.

See Chapter Two of this laboratory manual for an example pre-lab report.

Note: your Teaching Assistant or Lab Instructor may elect to give a quiz before the lab begins on the material cov-
ered in the laboratory. You will do quite well on that quiz if you’ve properly prepared for the lab and studied up on the
stuff prior to attending the lab. If you simply copy the material from someone else you will do poorly on the quiz and
you will probably not finish the lab. Do not take this pre-lab exercise lightly.

8.10 Laboratory Exercises

In this laboratory you will experience the following:

• You will perform experiments with software based delay loops.
• You will use your music program to produce music on the PC’s speaker.
• You will adjust the timing of your music by varying a software based time delay

❏ Exercise 1: Software Delay Loops. Run the “Delay” program provided in this chapter. Verify that it takes about
five seconds to execute. Modify the program to run for 20 seconds rather than five. Run the program several
times, measuring the delay on each run. In your lab report, comment on the accuracy of the delay loop.

❏ Exercise 2: Alignment of the Delay Loops. The alignment of the delay loop can have an impact on the execu-
tion time of that loop. At the very least, the loops should begin on a boundary which is a multiple of the
machine word size (word on 8086/80286/80386sx, dword on 80386/80486, qword on Pentium). On the 80486
and later processors which provide on-chip caches, it’s possible to get slightly better performance by aligning
the code on a cache line (16 bytes for 80486, 32 bytes for Pentium). While there is no need to make the code
run any faster, there is a need to make it run consistently. The big problem with consistently is that the initial-
ization loop which determines TimedValue might be on a different byte boundary than the actual timing loop
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in Delay18. As a result, the initialization loop may run at a different speed than the
actual delay code. To ensure consistency between the two we have to ensure that both
sets of loops begin on the same byte boundary.

8.25 What assembler directive can you use to align a code sequence to a
given boundary?

___________________________________________________________________

8.26 Assuming you are using an 80486 processor with 32-bit memory, what
instruction should you place before the loops to ensure they both lie
on reasonable boundaries?

___________________________________________________________________

Align the initialization code on a four-byte boundary using the above directive and then fol-
low the directive with three NOPs. This forces the beginning of the loop to (Address MOD
4)+3 which always forces an extra read for the opcode. Align the loops in the Delay18 rou-
tine to an even four byte boundary. Adjust the main program to delay for 20 seconds (as in
exercise 1). Run the program several times and measure the result. Then align both sets of
loops to an even four byte boundary. Retime the program and compare your results.

❏ Exercise 3: Effect of Wait States. Remove the IN instruction from the two loops in the
Delay18. Note the value of the TimedValue variable with and without the IN instruc-
tion. Look up the timing for the IN instruction and comment on the speed of the pro-
gram with and without the IN. How do you explain the discrepancy? Note: on very fast
machines you may need to change the value of the innermost loop counter from 10 to
a larger value, such as 50.

❏ Exercise 4: Alignment, again. With the IN instruction removed, repeat exercise two.
Comment on the results. As you can see, the large number of wait states introduced by
the IN instruction allows the CPU to overlap many operations it could not otherwise
do. Note that this effect is exaggerated on the more powerful processors. If you are
using a low-end CPU (or a DOS emulator) you may not see significant differences.

❏ Exercise 5: Playing Music. Using the Note and Rest macros, write a short program to
play the “Amazing Grace” tune.

❏ Exercise 6: Play it again, Sam. Using sheet music you obtain, write a short program to
play a tune of your choice.

8.11 Programming Projects

❏ Program #2: Write a program to transpose two 4x4 arrays. The algorithm to transpose
the arrays is

for i := 0 to 3 do
for j := 0 to 3 do begin

temp := A [i,j];
A [i,j] := B [j,i];
B [j,i] := temp;

end;

Use the same data values for A and B appearing in program #1 above.

❏ Program #3: Create a program to play music which is supplied as a string to the pro-
gram. The notes to play should consist of a string of ASCII characters terminated with a
byte containing the value zero. Each note should take the following form:

(Note)(Octave)(Duration)

8.20 AND al, 0FCh

8.21 

in al, PPI_B
and al, 0FCh
out PPI_B, al

8.22 4554
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where “Note” is A..G (upper or lower case), “Octave” is 0..3, and “Duration” is 1..8. “1” corresponds to an eighth
note, “2” corresponds to a quarter note, “4” corresponds to a half note, and “8” corresponds to a whole note.

Rests consist of an explanation point followed by a “Duration” value. 

Your program should ignore any spaces appearing in the string.

The following sample piece is the song “Amazing Grace” presented earlier.

Music byte "d12 g14 b11 g11 b14 a12 g14 e12 d13 !1 d12 "
byte "g14 b11 g11 b14 a12 d28"
byte "b12 d23 b11 d21 b11 g14 d12 e13 g12 e11 "
byte "d13 !1 d12 g14 b11 g11 b14 a12 g18"
byte 0

Write a program to play any song appearing in string form like the above string. Using music obtained from another
source, submit your program playing that other song.
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8.23 ((I*2+J)*4+K)* 2

8.24 

shl al, 1
add al, ah
shl al, 2
add bl, al
mov bh, 0
shl bx, 1
mov ax, 

divisors[bx]

8.25 .ALIGN value

8.26 .ALIGN 4


