System Organization Lab Manual, Chapter Three

A good assembly language programmer needs to know a little more than an assembly language instruction set. An
in-depth understanding of the underlying computer architecture is also necessary. Unless you know the internal opera-
tion of the instructions and how these internal operations interact, you cannot write the fastest possible assembly lan-
guage code. Likewise, without knowing how a machine encodes instructions, you will not be able to predict if one
instruction sequence is shorter or longer than another.

In this laboratory you will learn how to use a rudimentary debugger to create, test, and execute short machine lan-
guage programs. You will also explore cycle counting and byte-counting program optimization methods. These are
skills which are important when working with complex assembly language programs.

3.1 Debuggers and SIM886

A debugger is a program which lets you display and modify different memory locations, execute instructions, dis-
play machine registers, and perform other common operations necessary to test and correct machine language programs.
The correct use of a debugger will dramatically reduce the time you spend testing and correcting assembly language pro-
grams. In this laboratory you will use a very simple machine language debugger for the x86 processors. This will provide
a gentle introduction to the CodeView debugger which Chapter Four describes.

Before describing the debugger itself, a discussion of the x86 simulator is necessary. Since the x86 processors are
hypothetical, there isn’t any hardware on which you can run an x86 program. The x86 simulator (SIM886) is a piece of
software which simulates an x86 processor. This program fetches x86 opcodes from memory (the 80x86's) and then exe-
cutes a sequence of instructions which emulates the behavior of those instructions.

The SIM886 program uses integer variables to hold the values of the 886 registers and memory locations. For all
intents and purposes, you could not tell the difference between the SIM886 program and an actual 886 processor (if one
existed). This simulation technique is not limited to hypothetical processors, by the way. SoftPC and other programs use
this very technique to emulate an 80x86 processor on Macintosh, NeXT, and other computer systems.

The SIM886 program can control the LED and switch circuitry you built for the lab exercises in Chapter Two. When
you run SIM886, it defaults to LPT1:. If you use the circuitry and you install it in a parallel port other than LPTL;, you
should specify the port name as a command line argument to the SIM886 program:

c:> sinB86 |ptl:
c:> sinB86 |pt2
c:> sinB86 |pt3

3.1.1 Displaying and Entering Memory Values

The SIM886 program simulates the 64K address space of the 886 processor using a 64K array in the 80x86 memory
space. Whatever would normally appear at memory location zero on the 886 processor winds up at index zero in that
array. Like any decent debugger, the SIM886 program lets you display and enter memory values. When you first run the
SIM886 program, it initializes all bytes in the 886 memory space so that they contain 0EOh (which turns out to be the
opcode of the 886 HALT instruction). You can verify this by using the SIM886 “D” (for Dump or Display). This command
takes the form:

D address
This command displays up to 16 bytes of data starting at the specified address. For example, the command “D 1000” dis-
plays 16 bytes starting at address 1000h? as follows:
1000: EO EO EO EO EO EO EO EO EO EO EO EO EO EO EO EO

1. All constant values in the debugger are hexadecimal values. You do not need to (in fact, you cannot) place the “H” suffix after the value.

Lab 3-85



Lab Ch03

The first EO above is the value for location 1000h, the second EO is the value contained in location 1001h, ..., the last EO
displayed above is for location 100Fh. Note that there are extra spaces between the values for 1003h/1004h, 1007h/
1008h, and 100Bh/100Ch. This makes locating a specific value on the line a little easier.

The Dump command is very useful for displaying the values of variables, arrays, or even machine code (binary rep-
resentations for instructions). However, you must always keep one important point in mind- the Dump command dis-
plays values across the line from a low address to a high address. This seems reasonable enough. But note that word
values, which the 886 processors stores in two consecutive bytes with the low-order byte at the lowest address and the
high-order byte at the highest address, will appear backwards on the dump display. If the word at address 1000h con-
tains 1234h and you use the Dump command, you'll see something like the following:

1000: 34 12 XX XX XX XX XX XX XX XX XX XX XX XX XX XX

You must remember to mentally swap the values around when reading them from the screen. A very common mistake
beginners make is to forget to swap the bytes displayed by the debugger.

The Dump command lets you view the contents of memory, the Enter command lets you change the contents of
one or more memory locations. The format for the Enter command is

E address

This instructs the SIM886 program to begin accepting input values from the keyboard. Immediately after you enter the
command “E 1000” SIM886 responds with

1000( EO) :

The first four digits are the address you plan to modify (in this example, address 1000h). The value in the parentheses is
the current value for that location. The value EQ above is what you would expect immediately after loading the SIM886
program into memory. Of course, if you've previously changed the contents of memory location 1000h, it will display the
current value rather than EO.

To change the contents of the specified location, simply enter an eight-bit hex constant (without the trailing “h”,
remember SIM886 assumes all values are hexadecimal) and press . If the value you enter is outside the range 0..FF
then SIM886 will print an appropriate error message. If the value begins with a non-hexadecimal character, SIM886 will
simply set the location to zero. The x86 processors only support 16-bit registers; therefore, most values you input will be
16 bits. This means you need to enter two bytes into memory for each value. SIM886 provides eight bit entry mainly for
entering instruction opcodes.

After you hit SIM886 will display “1001(E0): _” and prompt you to enter a new value for location 1001h. Each
time you enter a value, SIM886 will prompt you to enter a value for the next location. When you are through entering
data (or if you want to enter data at some non-consecutive address), simply hit without typing anything else.

Note: Don't forget to enter word values with the L.O. byte first and the H.O. byte second.

31 How would you display the value of memory location 18FAh in the 886 memory space
using the SIM886 debugger?

3.2 What sequence of commands would you use to enter the word value 9837h to memory
starting at location 8000h?

One last point concerning the Enter command which is worth mentioning: if you type a valid hexadecimal value fol-
lowed by a space, SIM886 ignores the data on the line following the hexadecimal value. This allows you to type in values
like the following:

E 1000
1000(00): EO HALT instructi on[ee]
1001(00) : [eme]
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The command above enters EO into memory location 1000h. SIM886 ignores everything on the
line following the EO (in this case, the “HALT instruction” comment).

3.1.2 Disassembling (Unassembling) 886 Instructions

Had you not been told that “E0” was the binary opcode for the HALT instruction you might
not have ever guessed the significance of this value. All 886 instructions appear in memory as
numeric values. Trying to decipher the meaning of these numeric values is quite tedious and
error-prone. Fortunately, this isn't something you'll really need to do because SIM886 can do this
for you automatically. The Unassemble command will disassemble bytes in memory producing
human-readable forms of the instructions.

The Unassemble command uses the syntax:
U address

where address is the hexadecimal address of the first byte of the instruction sequence you wish
to have disassembled. Since the 886 stores instruction codes in successive bytes in memory, the
Unassemble command will disassemble sequential instructions. This command disassembles 15
instructions starting at the address you specify. Since instructions on the 886 are one or three
bytes long, the number of bytes disassembled may be as few as 15 bytes or as many as 45 bytes.

3.3 If you wanted to enter the three byte instruction “ADD CX, 1” (the
opcode bytes are 57 01 00) at address 1000h, what SIM886 command(s)
would you use?

3.4 What SIM886 command would you use to view the instruction in a
human readable form after entering it into the machine?

3.1.3 Displaying and Modifying CPU Registers

The Register command (“R”") displays the current values of the 886 registers. It will display
the values for AX, BX, CX, DX, and IP. It also disassembles the current instruction pointed at by
IP. Unlike most debuggers, SIM886 does not let you modify the values of the 886's registers. In a
real assembly language debugger this would be a problem. However, the programs you will be
writing in 886 machine code will be very short and simple. You will not miss the ability to mod-
ify the registers. This command is mainly for tracing through programs and watching the results
produced.

As it turns out, you won't use the Register command to display the registers very often. The
Trace command displays the 886's registers after it steps through each instruction. You'll typi-
cally use the Register command only after a disassembly or memory dump and the previous reg-
ister values have scrolled off the screen.

The 886 register set usually contains zero upon initial entry into the SIM886 program. After
you execute some 886 instructions the register values may change. The register set always main-
tains the values last stored into the registers. If you want to manually change a register value,
type one of the following commands

RAX val ue

RBX val ue

RCX val ue
RDX val ue

These commands let you assign a hexadecimal value to the 886 registers.
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3.1.4 Executing 886 Instructions

The SIM886 Trace instruction single steps through a single instruction. The syntax for this instruction is
T address

SIM886 executes a single instruction at the specified address. After executing the instruction, SIM886 displays the regis-
ters and disassembles the next instruction in memory following the executed instruction.

Another command you can use to execute 886 instructions is the Go command. Go begins execution which stops when
you press control-C or the SIM886 program encounters a HALT instruction:

G address
begins execution at the specified address

3.1.5 File I/O Commands

SIM886 provides three commands to let you read data from a text file and write data to a text file on the disk. The
Input command takes the following form:

| filenane

Filename must be a valid DOS pathname. The Input command tells SIM886 to read the next set of keyboard commands
directly from the file rather than the keyboard. When SIM886 encounters the end of this file, it reverts input back to the
keyboard. The primary purpose for the Input command is to allow you to create an 886 assembly language program with
a text editor (such as DOS' EDIT program) and then read this file into SIM886. A typical source file you would create with
an editor might look like the following:

AO
load ax, O
| oad bx, 1

add ax, bx

uo

Note the “A 0" command as the first line of this file. Remember, after processing the Input command, SIM886 is going to
try to read another command from the standard input. Since the input is coming from the file, the file must contain the
command that activates the SIM886 assembler. The “u 0" command instructions SIM886 to unassemble this code after
assembling it.

The other two file commands in SIM886 let you capture all output that goes to the screen and send a copy of it to a
DOS text file. This provides a convenient way to capture the output of a SIM886 session without using the [][[F]
option to send the output to a printer. This allows you, for example, to create a text file transcription you can import into
the word processor you're using to create your lab report.

To begin capturing data, use the “C filename” command. From that point forward, all data written to the screen is
also written to the output file. To turn off the capture operation, use the “X” command.

3.1.6 Miscellaneous SIM886 Commands and Other Notes

If you forget one of the SIM886 commands, you can get an instant refresher using the SIM886 help command. Press-
ing the question mark (“?") displays a list of the available commands with a brief description of their syntax and opera-
tion. Furthermore, if any new commands have been added since the publication of this manual, or if your local
installation has added some special commands, the help command will tell you about them.

When you are done using SIM886, you can return to MS-DOS using the Quit command. Simply press “Q” followed
by at the SIM886 prompt to quit the program. Note that if you restart the SIM886 program after quitting it, you lose
everything in the 886 memory space. You will have to reenter such values if you need them.
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On all of the SIM886 commands, the address following the command is optional. If you do
not supply an address, SIM886 will look at the last time you used that command and supply the
next available address for the current command. For example, if you use the command “D 1000”
to dump memory locations 1000...100F and then press “D [e=r]”, SIM886 will automatically sup-
ply the value 1010 for you.

SIM886 remembers the last address for each specific command. If you enter the commands
“D 1000” followed by “U2000” and then press “D [e=]”, SIM886 will display locations
1010...101F, not the bytes following the last disassembled instruction. Likewise, were you to
enter the command “U ce” at this point, it would continue the disassembly after the previous
instruction, it would not begin the disassembly at address 1020. SIM886 maintains separate cur-
rent address values for the D, E, U, and X commands.

Another useful shortcut is the command. If you press the key by itself on a
SIM886 command line, it repeats the last instruction at the new address. For example, if you
enter the command “D 1000 [==r]” and then press [==r], SIM886 will repeat the memory dump
command beginning at location 1010. Repeatedly pressing will dump memory locations
1020...102F, 1030...103F, etc. This “repeat last command” operation is particularly useful with
the Trace command. After you use the “T” command to execute the first instruction, repeatedly
pressing will single step through the following instructions.

The “W count” command lets you specify the number of wait states SIM886 will use on each
memory access. By default, SIM886 uses zero wait states so accessing memory at an even
address requires only one clock cycle. You can change the number of wait states using this com-
mand. Like all SIM886 commands, the numeric value you specify is a hexadecimal number.
Don't forget this if you want to specify more than nine wait states. If you enter the “W” command
without any parameters, SIM886 defaults back to zero wait states. If you want to see the current
number of wait states that SIM886 is using, use the Register command to display the register val-
ues. The “WS” register specifies the number of wait states on each memory access.

SIM886 maintains a global clock cycle counter. After executing each instruction SIM886
adds the number of clock cycles for that instruction to this global counter. This lets you trace
through a sequence of instructions and determine how many clock cycles occurred during the
execution of those instructions. You can view the global clock cycle counter by using the Regis-
ter command. The “Z” (for Zero) command resets this global clock cycle counter to zero. If you
want to time a sequence of instructions, you should reset the global cycle counter before execut-
ing those instructions.

3.2

Machine Language vs. Assembly Language

As you may have noticed, there isn’t a command in SIM886 to enter 886 instructions into
memory. You can execute instruction using the Trace command, but there isn't a command
(described yet) to let you type something like “LOAD AX,0” into the debugger. Well, it turns out
that the 886 processor (hypothetical or otherwise) does not execute instructions like
“LOAD AX,0". Instead, it executes numeric encodings of these instructions. The “LOAD AX,0"
instruction actually consists of three one byte values: 07 00 00. These three values tell an x86 pro-
cessor to load the AX register with zero. These numeric forms of the instruction are machine
code- instructions specifically for the machine. The human-readable form, “LOAD AX,0", is
assembly Ianguagez. As you can probably tell, it's much easier to work in assembly language
than in machine language. Although “LOAD AX,0” might not be the most understandable com-
mand you've ever seen, it's probably a lot easier to read and understand than " 07 00 00”.

2. The term “assembly language” came about because the process of converting assembly code to machine code tradi-
tionally consists of building (or assembling) binary machine code instructions from various bit patterns which make
up the instruction, operands, and addressing modes.

80x86 Based Systems
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D 18FA

E 8000
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U 1000
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Most of the time you will be working in assembly language. This is, after all, an assembly language text, not a
machine language text. However, it's definitely worthwhile to spend a little time working with machine language. This
achieves three things: (1) it gives you an appreciation for what the assembler does for you; (2) many debugging prob-
lems require that you work at the machine level; and, most importantly, (3) working at the machine level forces you to
take a close look at the underlying architecture, which you might be able to ignore at the assembly level.

The 80x86 processor family is quite complex and difficult for beginners to understand at the machine level. Indeed,
that's the whole reason for introducing the x86 hypothetical processors in this text. The x86 family is very simple. Its
design helps demonstrate important architectural features without being laden down with 1976 design decisions®. None-
theless, Much of what you learn concerning the 886 applies almost directly to the 80x86 family as well.

35 Given that the machine code for “LOAD AX,0” is 07 00 00, what SIM886 command would
you use to enter this instruction into memory at address 2000h?

3.3 A Review of the 886 Instruction Set

The x86 processor family supports eleven different instructions. They are LOAD, STORE, ADD, SUB, IFEQ, IFLT,
IFGT, HALT, GOTO, GET, and PUT. With the exception of the HALT instruction, all of these instructions require one or
more operands.

The LOAD, STORE, ADD, and SUB instructions all have identical operands. These instructions take the form:
instr reg, operand

where “instr” is any of “LOAD”, “STORE”, “ADD", or “SUB”; “reg” is any of “AX”, “BX”, “CX", or “DX"; and operand is one
of “AX”, “BX", “CX", “DX", “[BX]", “const[BX]", “[const]", or “const”.

The LOAD instruction makes a copy of the second operand and places it in the first operand. This instruction over-
writes the value of the first operand and does not affect the value of the second operand. You generally use this instruc-
tion to copy a value from memory into one of the four 886 general purpose registers, although you can use it to copy
data from one register to another as well.

The second operand (the source of the data to copy to the first operand) can be one of the four registers, a memory
address, or a constant. Quickly, here's what each of the forms of this instruction do:

LOAD ax, ax ; Produces no observabl e results!

LOAD ax, bx ; Copies value in BX into the AX reg
LOAD ax, cx ; Copies value in CXinto the AX reg.
LOAD ax, dx ;Copies value in DX into the AX reg

(Note that you may substitute BX, CX, or DX for the first operand above to load the specified value into BX, CX, or DX
rather than AX. For example “LOAD bx, ax” copies the value in the AX register into BX.)

LOAD ax, [bx] ; Copi es data from nmenory | ocation “bx”
; into ax.

LOAD ax, nn[bx] ;Copies data fromnenory |ocation “bx +
;. nn” into ax. “nn” represents a 16-bit

; constant.

LOAD ax, [nn] ; Copies data frommenory | ocation “nn”
; into ax. “nn” represents a 16-bit
; constant.

LOAD ax, nn ; Copies 16-bit constant “nn” into ax.

These last four forms of the LOAD instruction probably deserve a little more explanation. The first three of these
introduce different memory addressing modes. That is, they provide different ways of accessing memory. The first of
these, “[BX]" is typically referred to as the indirect addressing mode. This addressing mode does not copy the value of BX
into AX. That would be direct addressing. Instead, BX contains a value which the instruction uses as the memory address

3. If you hadn't guessed, the 8086 was first developed in 1976. Many of the complexities of the 80x86 family stem from the fact that the original 8086
designers didn't expect their processor to last so long in the marketplace.
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of the actual value to fetch. For example, if BX contained 1800h, “LOAD ax, [bx]” would load ax
with the word value beginning at memory address 1800h.

The second memory addressing mode above is the indexed addressing mode. As you'll see
in Chapter Four, this addressing mode is particularly useful for accessing elements of arrays and
records. This address mode adds the value contained in BX with the 16-bit constant specified by
“nn”. The 886 uses their sum as the effective address and loads the specified register (AX in this
case) with the 16-bit value starting at that address.

The third memory addressing mode, “[nn]", is the direct addressing mode. The second oper-
and is just a 16-bit constant which provides the memory address to fetch and load into the desti-
nation register (AX in this case). You would use this addressing mode, for example, to access 16-
bit variables in memory.

The last addressing mode isn't really a memory addressing mode, it's the immediate
addressing mode which lets you load constants into a register. The “LOAD ax, nn” instruction
(assuming “nn” represents a 16-bit hexadecimal constant) load the AX register with the value
“nn”. For example, “LOAD ax, 0" loads the AX register with zero.

As mentioned earlier, the STORE, ADD, and SUB instructions allow the same operands as
the LOAD instruction. The STORE instruction is the converse operation to LOAD. It stores the
first operand to the location specified by the second operand. Note that the STORE instruction
does not allow the immediate addressing mode (it doesn’t make sense to store a register into a
constant). ADD and SUB, however, allow all addressing modes. Note that certain LOAD and
STORE instructions perform the same operation. “LOAD ax, bx”, for example, does the same
thing as “STORE bx, ax”.

The ADD instruction adds the value specified by the second operand to the first operand
leaving the result in the first operand. The SUB instruction subtracts the second operand from the
first operand leaving the result in the first operand. Both instructions allow all eight possible
addressing modes for the second operand (four register modes, three memory modes, and the
immediate mode).

The IFEQ, IFGT, and IFLT instructions all take three operands:

I FEQ reg;, regps, nn
I FGT reg;, regp, nn
| FLT I’egly re921 nn

reg; and reg, represent one of the four 886 registers: AX, BX, CX, or DX. “nn”, as usual, repre-
sents a 16-bit constant. These instructions compare reg; to reg,. For IFEQ, if the two registers are

80x86 Based Systems

Pt fifrfrfm r i
\- |
i rr mmm Note, this 16 bit operand is
present only if mmm is 101,
000 = load 00 = AX 000 =AX 110, or 111 or if iii is 100,
001 = store 01 = BX 001 =BX 101, 110, or 111; ifiii is
010 = add 10 = CX 010=CX 100, 101, or 110, then mmm
011 = sub 11 =DX 011 =DX may only be 000, 001, 010,
100 = ifeq 100 = [BX] or 011. Ifiiiis 111 then the
101 = ifit 10 1 = xxxx[BX] instruction uses a special
110 = ifgt 110 = [xxxx] encoding described else-
111 = special 11 1 = constant where.

X86 Instruction Encoding
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equal, the 886 loads the IP register with the constant. If the two registers are not equal, the 886 ignores the constant. IFGT
and IFLT work in a similar manner except they load IP with the constant if reg, is greater than reg, or reg, is less than
reg,, respectively. Note that loading the IP (instruction pointer) register with “nn” will interrupt the normal flow of execu-

tion. Instead of executing the instruction following IFEQ, IFGT, or IFLT, the 886 will execute the instruction at address
“nn” if the IFxx instruction loads IP with “nn”. For this reason, these are transfer of control instructions.

The GET and PUT instructions let you perform simple 1/0 when running 886 programs. They both accept a single
operand which is identical to the second operand of the STORE instruction (that is, a register or a memory addressing
mode).

The GET instruction stops execution and prompts you to enter a value (in hexadecimal) from the keyboard. The
PUT instruction outputs the specified value to the screen. The GET instruction is particularly useful for loading different
values into registers while the program is running. Although the GET instruction allows a memory addressing mode,
using the GET instruction to read a value into a memory location is of marginal utility. After all, you can use the SIM886
Enter instruction to accomplish the same thing. Of course, were you to modify SIM886 to execute more than one instruc-
tion at a time, this instruction would be more useful.

The PUT instruction outputs the specified register or memory operand. Since SIM886 displays the contents of all 886
registers after executing each instruction, using PUT to output a register value won't buy you much. It is quite handy for
output memory locations, however (this saves you the effort of using the SIM886 Dump command).

The GOTO instruction must be followed by a 16-bit constant. This instruction loads the IP register with the value of
the constant. Like the IFxx instructions, the GOTO instruction is a transfer of control instruction. The IFxx instructions are
conditional transfer instructions since they transfer control (or not) based on some condition being true. The GOTO
instruction is an unconditional transfer instruction since it transfers control regardless of any condition which may or
may not exist.

The HALT instruction is the only 886 instruction which doesn't require any operands. When SIM886 encounters this
instruction it stops processing. The HALT instruction does not update the IP to point at the next instruction. If you exe-
cute HALT and immediately specify the eXecute instruction again (without specifying a new address) will execute the
same HALT instruction.

3.6 How could you copy the contents of memory locations 1000/1001h to memory locations
8000/8001h using 886 instructions? (hint: feel free to use more than one instruction if nec-
essary)

3.7 Write a short 886 program which inputs a value from the keyboard and sets AX to zero if
the value is less than 8000h or sets AX to 1 if the input value is greater than or equal to
8000h, then halts.
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3.4

Converting 886 Programs to Machine Code

The preceding section described the operation of the 886 processor in terms of assembly
language. Alas, you've already been told that SIM886 doesn't support assembly language, only
machine code. This means you've got to convert nice, readable (1), instructions like “LOAD AX,0"
into sequences of numbers like “07 00 00" before you can enter the instruction into SIM886. The
question is “How on Earth does someone memorize all the possible instruction codes?” The
answer is quite simple- you don't. Instead, you assemble the instruction opcodes yourself using
some relatively simple look ups.

The 886 processor uses a relatively simple instruction encoding scheme. All 886 instructions
use the encodings below. All opcodes are one byte long. All instructions are one or three bytes
long (the extra two bytes in the three-byte instructions hold the 16-bit constants appearing in 886
instructions). The opcode byte always appears first in memory (that is, at the lowest address). If
a 16-hit constant follows the opcode, the L.O. byte of the constant comes first followed by the
H.O. byte.

Bits zero through two of the opcode byte contain the addressing mode for the second oper-
and. Bits three and four encode the value for the first register operand. Bits five through seven
encode the instruction itself.

As simple as the 886 instruction encoding scheme is, there are still some inconsistencies of
which you must be aware. For example, the 886 has eleven different instructions, but only three
bits to encode the instructions. Three bits lets you specify eight different instructions, not eleven.
To get around this, the 886 uses a special instruction encoding, iii=111 (the special entry above)
to extend the instruction set. When the opcode field contains 111, the register field determinates
the actual instruction. The for possible values are

00 - Halt 01 - Goto 10 - Get 11
- Put

Since these instructions use the register operand field to encode the operation, there is only
one field left for the operand. Goto, get, and put only allow a single operand, so this works out
well. Halt does not allow any operands, so if the H.O. five bits of the opcode contain 11100,
SIM886 ignores the L.O. three bits (the second operand field).

Finally, consider the IFxx instructions. They have three operands. How does the encoding
above handle them? Easy. The register and operand fields (bits 0..4) encode two registers. The
third operand is a displacement, so these instructions always include a 16 bit displacement value
after the opcode.

3.4.1 Encoding the LOAD, STORE, ADD, and SUB Instructions

The LOAD, STORE, ADD, and SUB instructions are the easiest to handle, so they're the best
place to start. With one single exception, these four instructions implement the encoding above
exactly. The only exception is that the encoding above allows a machine code instruction of the
form “27 00 00" which corresponds to a “STORE reg, immediate” instruction. Since there is no
such thing as a store immediate instruction, we have a problem. To solve this problem the 886
adopts the same strategy as most processors- it treats this as an illegal instruction which pro-
grammers are not supposed to put into the program. Doing so may produce an error or unpre-
dictable results.

To convert the “LOAD AX, 0" instruction to its equivalent machine code, the first step is to
construct the opcode for this instruction:

= Since this is the LOAD instruction, bits five through seven of the opcode must be
000.

80x86 Based Systems

3.5 E2000
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00
00
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The register operand (the first operand) is AX. The bit code for this operand is 00 (for bits three and four).
Finally, this instruction uses the immediate (constant) addressing mode. Bits zero through two must con-
tain 111 for the immediate addressing mode.

« Two additional bytes containing the immediate constant (0000h) must follow the opcode.

This yields the following opcode:

olo[oj@@ 1[1]1}

LOAD = 000 AX =00 Constant = 111

LOAD AX, O Encoding

Two bytes of zeros, representing the 16-bit immediate constant, must follow the opcode low order byte first. Therefore
the complete instruction is three bytes long and is 07 00 00. So now you can see where these “magical” numbers came
from.

For LOAD, STORE, ADD, and SUB, if the addressing mode is 101, 110, or 111 (xxxx[0Xx]. [xxxx],. or constant) then
there will be a 16-bit constant following the opcode (L.O. byte first). All other forms of these instructions are one byte
long. Some additional examples will help cement this down.

Consider the “LOAD BX, [L01F]" instruction. You build the opcode as follows:

Since this is the LOAD instruction, bits five through seven of the opcode must be 000.
The register operand (the first operand) is BX. The bit code for this operand is 01 (for bits three and four).
Finally, this instruction uses the direct ([xxxx]) addressing mode. Bits zero through two must contain 110
for the immediate addressing mode.

= Two additional bytes, containing 101Fh, must follow the opcode (1F first, 10 second).

This yields the following opcode:

o[o[OJEIEN 1[1]0}

LOAD = 000 BX =01 [xxxx] = 110

LOAD BX, [T01F] Encoding

3.8 How many bytes long is this instruction?

3.9 What is the hexadecimal machine code encoding for this instruction?

3.10  What will this instruction do when the 886 executes it?

3.11  What would the encoding be for “LOAD DX, [101F]™?

Consider the “STORE AX, BX” instruction:

= Since this is the STORE instruction, bits five through seven of the opcode must be 001.
The register operand (the first operand) is AX. The bit code for this operand is 00 (for bits three and four).
= Thisinstruction uses the register/BX addressing mode. Bits zero through two must contain 001 for BX.

The opcode is
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0[o[1]@ielofo[1}

STORE =001 AX =00 BX =001

STORE AX, BX Encoding

3.12  How many bytes long is this instruction?

3.13  What is the hexadecimal machine code encoding for this instruction?

3.14  What will this instruction do when the 886 executes it?

3.15  What is another instruction which performs the exact same operation
as this instruction?

3.16  What is the hexadecimal encoding for that other instruction?

Moving on to the ADD instruction, consider the encoding for the “ADD CX, [BX]" instruc-

tion:

= Bits five through seven of the opcode must be 010 for the ADD instruction.
The register operand (the first operand) is CX. The bit code for this operand is 10
(for bits three and four).

= This instruction uses the [BX] addressing mode. Bits zero through two must con-
tain 100 for [BX].

The opcode is

o[1[o[EmE 1]olof

ADD =010 CX =10 [BX] =100

ADD CX, [BX] Encoding

3.17  How many bytes long is this instruction?

3.18  What is the hexadecimal machine code encoding for this instruction?

3.19  What will this instruction do when the 886 executes it?

80x86 Based Systems

3.6 Onewaytodoit:
Load ax, [1000]
Store ax, [8000]

3.7 Onewaytodoit:
get bx
load cx, 8000
iflt bx, cx, Set0
load ax, 1
goto Done

Set0:  load ax, 0
Done: halt

Note: Set0 and Done repre-
sent the addresses of the cor-
responding “labels” in  this
short program. If this code
where assembled at address
zero, Set0 would be equal to
address 000Dh and Done
would be equal to address
0010h.
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Finally, consider the “SUB DX, 2002 [BX]" instruction. Its encoding is

= Bits five through seven of the opcode must be 011 for the sub instruction.

= The register operand (the first operand) is dx. The bit code for this operand is 11 (for bits three and four).
This instruction uses the indexed (xxxx[BX]) addressing mode. Bits zero through two must contain 101 for
XXXX[BX].

= Two displacement bytes containing the value 2002h (02 first, 20 second) must follow the opcode.

The opcode is

O[] 1/EMEN 1[0 1]

SUB =011 DX =11 XXXXX[BX] = 101

SUB DX, 2002 [BX] Encoding

3.20  How many bytes long is this instruction?
3.21  What is the hexadecimal machine code encoding for this instruction?

3.22  What will this instruction do when the 886 executes it?

3.4.2 Encoding the IFEQ, IFLT, and IFGT Instructions

The ifxx* instruction encodings do not follow the same exact form as load, store, add, and sub. Considering
that the ifxx instructions have three operands, this shouldn't be too surprising. The generic encoding for the ifxx
instructions is

| | | O S ‘S 16-bit Constant

iii: rr & ss
100 = IFEQ 00 = AX
101 = IFLT 01 =BX
110 = IFGT 10=CX
11 = DX

IFxx reg, reg, constant  Encoding

Note that bit two must be zero. IFxx instructions containing a one in this bit position are illegal instructions. Also note that
a 16-bit constant always follows the instruction, regardless of the opcode, hence all ifxx instructions are three bytes
long.

Bits three and four in the opcode supply the value for the first register operand. Bits zero and one supply the value
for the second register operand. Since these are the only encodings available, the first two operands must be registers.

4. IFxx represents any of the three instructions IFEQ, IFLT, or IFGT.
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The third operand is always a 16-bit constant, therefore the opcode doesn’t need any extra bits to
inform the x86 processor that the word following the opcode is a constant.

Remember, the x86 processors compare the two register operands and then transfer control
to the address specified by the 16-bit constant if the contents of the registers are equal (ifeq),
less than (if1t), or greater than (ifgt). Algorithmically, we can describe the operation of these
instructions as follows:

ifeq reg;, reg,, constant
if (reg; = regy) IP = constant
else IP:=1P + 3;

iflt reg;, regp, constant
if (reg; < regp) IP := constant
else IP:= 1P + 3;

ifgt regl, reg2, constant

if (regl > reg2) IP := constant
else IP:=1P + 3;
Were you to place a one in bit number two of the opcode, the x86 processor might confuse
the 16-bit constant following the opcode with one of the 16-bit constants required by the mem-
ory or immediate addressing modes. This is why bit number two must always contain zero.

As a short digression, it's worth mentioning why the x86 processors require that the second
operand be zero. Since we have the bit available, you might ask “Why not allow those extra
addressing modes?” Of course, three of the extra addressing modes require their own 16-bit con-
stant but that could be easily handled by extending the instruction to five bytes in such cases.
However, doing so would complicate the instruction set, something which tends to defeat the
purpose of the 886 in the first place. On the other hand, limiting the operands in this manner
forces you to memorize which instructions allow memory/immediate operands and which do
not. Processors which allow you to use the same operands for all instructions have regular or
orthogonal instruction sets. The x86 processors do not allow all possible forms for each operand,
s0 they are not completely orthogonal®.

Now consider the encoding for the ifgt dx, bx, 8098 instruction:

= Bits five through seven of the opcode must be 110 for the ifgt instruction.
« The first register operand is dx. The bit code for this operand is 11 (for bits three

and four).

e The second register operand is bx. Bits zero through two must contain 010 for
bx.

«  Two displacement bytes containing the value 8098h(98 first, 90 second) must fol-
low the opcode.

The opcode is

11 [OENEN O] O[ 1]]zosen
IFGT =110 DX =11 BX =01
IFGT DX, BX, 8098h Encoding

5. It should be pointed at that there aren’t any processors which have completely orthogonal instruction sets. Orthog-
onality is a measurement best described by terms like almost orthogonal, mostly orthogonal, somewhat orthogonal,
and non-orthogonal.
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38 3

3.9 O0EIF10

3.10 Load the BX register
with a copy of the data at
memory locations  101F/
1020.

311 1E1F10

312 1

313 21

3.14 3Copy the value in AX
to the BX register.

3.15 Load BX, AX

3.16 28

317 1

3.18 54

3.19 Fetch the word from
memory locations BX and
BX+1 and place this value in
CX.
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The hexadecimal encoding for this instruction is D9 98 80.
3.23  What is the encoding for the ifeq ax, bx, 1000h instruction?

3.24  What is the encoding for the ifeq cx, ax, 1234h instruction?

3.25  What is the encoding for the iflt bx, cx, 102h instruction?

3.26  What is the encoding for the ifgt cx, ds, 8908h instruction?

3.27  What is the encoding for the iflt dx, cx, 8880h instruction?

3.4.3 Encoding the HALT, GET, PUT, and GOTO Instructions

The HALT, GET, PUT, and GOTO instructions (the “special” instructions) use the following opcodes:

111 (e x ] x | x|

Special =111 HALT =00 xxx=000..111

HALT Encoding

Note that the HALT instruction does not have any operands. Therefore, the x86 processors ignore the L.O. three bits of
the opcode. Technically, OEOh is the correct opcode for the HALT instruction and OE1h...0E7h are illegal instructions.
Note that the special instructions (HALT, GET, PUT, and GOTO) use bits three and four to encode the instruction.

1 1|1 m||1|1 1| constant

Special =111 GOTO =01 constant

GOTO Encoding

Like the HALT instruction, the L.O. three bits of the GOTO instruction must contain a specific value, “111” in this case®. In
assembly form, the GOTO instruction always takes a single operand- a constant supplying the target address, e.g.,

GOTO 1011h

6. Actually, the SIM886 program will allow all the various register, memory, and constant addressing modes. However,
you will not need these modes and it isn't worth taking the time to explain how they operate. On the other hand, if
you figure it out and use these modes in your lab report, that might be worth some extra credit!
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The instruction code for this goto instruction is EF 11 10 (remember, L.O. byte of the constant

comes first).

1

1 I 1 Imlmlm mI optional const

Special =111 GET =10 Addressing Mode

GET Encoding

1

1 I 1 Ilmlm mI optional const

Special =111 PUT =11  Addressing Mode

The GET and PUT instructions both require a single operand which may be any valid x86 regis-
ter or memory addressing mode. These instructions do not allow the immediate addressing

PUT Encoding

mode’. Therefore, the “mmm” bits should never contain “111”. Examples:

get ax ;mmm = 000, so opcode is FO

put bx ;mmm = 001, so opcode is F8

get [1000] ;mm = 110, so opcode is F6, const is 00 10

put [ bx] ;mmm = 100, so opcode is FC

get 1234[ bx];mm = 101, so opcode is F5, const is 34 12

put dx ;mmm = 011, so opcode is FB

get cx ;mmm = 010, so opcode is F2

put cx ;mmm = 010, so opcode is FA

put 2[ bx] ;mmm = 101, so opcode is FD, const is 02 00
3.28  What is the hexadecimal encoding for the “HALT” instruction?
3.29  What is the hexadecimal encoding for the “GOTO 1245h” instruction?
3.30  What is the hexadecimal encoding for the “PUT [BX]” instruction?
3.31  What is the hexadecimal encoding for the “PUT 15h[BX]” instruction?
3.32  What is the hexadecimal encoding for the “GET AX” instruction?
3.33  What is the hexadecimal encoding for the “GET [2025h]” instruction?
3.34  What is the hexadecimal encoding for the “PUT DX” instruction?
7. Actually, the PUT instruction will accept the immediate mode, but this is of little value.
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320 3

3.21 7D 0220

3.22 1t will fetch the word
from  memory locations
2002+BX and 2003+BX and
subtract this value from DX,
leaving the difference in DX.

Lab 3-99



Lab Ch03

3.4.4 Creating Machine Language Programs

Thus far, you've seen how to convert a single x86 instruction into machine code. However, x86 programs generally
contain many different x86 instructions. For example, consider the following short x86 program which reads five num-
bers from the user and displays their sum:

load dx, 5 ; Repeat | oop 5 tines
load cx, O ; Loop counter
|load ax, O ; Accurrul ate result here

| p: get bx ; Read val ue from user
add ax, bx ; Add val ue to accumnul at or
add cx, 1 ; Bump | oop counter by 1
iflt cx, dx, Ip ;Branch if not five tines
put ax ;Print result
hal t ; Okay, we’re done

Note: in the code above “Ip™ is a symbolic label which denotes the target of the iflt instruction. This is just a place
holder. The actual target address is something we'll fill in momentarily. For now, just note that the iflt instruction will
transfer control to the get instruction if cx is less than dx . Trace through the code above once by hand to convince
yourself that it really will sum up five numbers and print the result.

To convert an assembly language program, like the one above, into machine language the first thing you need to do
is decide where in memory you are going to place the program. By convention, most x86 programs start at location zero,
though there is nothing stopping you from putting the program somewhere else in memory. Most of the examples in this
text will start at memory location zero.

To convert the program above into machine code, you convert each individual instruction to its hexadecimal encod-
ing. for the above, you would have:

load dx, 5 :1F 05 00

load c¢x, O ;17 00 00

load ax, O ;07 00 00
| p: get bx i F1

add ax, bx 141

add cx, 1 ;57 01 00

iflt cx, dx, Ip ;B3 ?? ??

put ax ; F8

hal t ; EO

Note that the constant field of the IFLT instruction doesn’t contain a particular value. This is because we need to fill
in the address of the GET instruction at the “LP” label for this constant. To do that we need to store the bytes of each of
these instructions into memory (starting at memory address zero):
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3.23 810010
Address | Code Instruction
0 1F LOAD DX, 5
324 903412
1 05
2 00
3 17 LOAD CX, 0
3.25 AA0201
4 00
5 00
6 o7 LOAD AX, O
7 00 3.26 D308 89
8 00
9 F1 GET BX 3.27 BA8088
A 41 ADD AX, BX
B 57 ADD CX, 1 128 E0
C 01
D 00
329 EF4512
E B3 IFLT CX, DX, 0009
F 09
10 00 330 FC
11 F8 PUT AX
12 EO HALT 331 F
13
After organizing the data in this fashion, it's much easier to determine how to fill in the con- | 3.32 F0
stant for the IFLT instruction. By simply noting that the GET instruction appears at location 0009
we can supply this address as the 16-bit constant operand for the IFLT instruction. In this table
each line represents one byte of code. Instructions which consume three bytes take up three
lines in the table. There are a couple blank tables like this one provided in this lab manual soyou | 333 F6
can easily create your own x86 machine language programs. Feel free to make copies of these
tables and use them for all your machine language programs.
3.35 Once you've converted an x86 assembly language program into
machine code, how would you enter this machine code into the SIM886 | 334 FB
program?
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3.36  Suppose you were to enter the exact machine code in this example starting at memory
location 1000h. Would the program still work? Why or why not?

3.5

The Execution Time of an x86 Program

Chapter Three in the textbook provides the timings for each of the processors in the x86 family. By referring to these
tables you can determine how many “clock cycles” the x86 processors will take to execute a program®. By going through
and carefully counting the clock cycles, you can optimize the performance of your programs. Consider the program from
the previous example:

load dx, 5 ; 7-8 cycles

load cx, O ;7-8 cycles

load ax, O ;7-8 cycles
| p: get bx ;1 cycle

add ax, bx ;7 cycles

add cx, 1 ;9-10 cycles

iflt cx, dx, Ip ;9-10 cycles

put ax ;1 cycle

hal t ;0 cycles

To compute how long this code would take to execute on the 886, you must add up the timings for the instructions
inside the loop and multiply this number by five (since the loop executes five times) and then add up the cycles for the

instruction outside the loop®. For the code above that turns out to be somewhere between ((1+7+9+9)5 + 22) cycles and
((1+7+10+10)*5 + 25) cycles; that is, somewhere between 152 and 165 cycles.

Simply claiming that the program will take between 152 and 165 cycles is somewhat nebulous. Now on some pro-
cessors this is the best you can do. With the 886 processor we can figure out the timing exactly. The instructions which
have a range of cycles times rather than a single value do not choose one of the values in the range at random. Consider
the “LOAD reg,constant” instruction. If you look it up in the table you'll find that it takes between seven and eight cycles
to execute. The reason this instruction doesn't always execute in the same amount of time is because the x86 processors
are all 16-bit processors. If an instruction is three bytes long (like the LOAD reg,constant instruction) it contains a 16-bit
constant following the opcode. If this constant falls on an even address the processor can fetch the constant in one clock
cycle. However, if the constant begins at an odd memory address it will take two clock cycles to fetch the constant. This
is why the 886 processor timing table lists these instructions as requiring between seven and eight cycles to execute.
“LOAD reg, constant” requires seven cycles if the instruction begins at an odd address (which will put the constant at an
even address). It takes eight cycles if the instruction begins at an even address.

Most of the other 886 instructions whose execution time varies by one clock cycle do so for the same exact reason.

The only exceptions are the instructions utilizing the [BX] addressing mode. These instructions are all one byte long
so there isn’t an extra cycle consumed by the processor when it fetches a 16-bit constant following the opcode at an odd
address. There is no such constant following the opcode! However, this is a memory addressing mode which does read a
word from memory (from the address contained in BX). If BX contains an odd value, the 886 will have to read a word
from an odd address, taking an extra cycle. If BX contains an even value, the 886 processor can read all 16 bits in one
clock cycle.

Those instructions whose timings vary by two clock cycles are all three byte instructions which reference memory.
These guys can lose one clock cycle if the 16-bit constant following the opcode is at an odd address or if the memory
location specified is at an odd address. These instructions will require two additional clock cycles if the 16-bit constant is
at an odd address and the memory location specified is at an odd address.

Lab

8. These tables do no include timings for the GET, PUT, and HALT instructions. Mainly because these instructions take an indefinite amount of time
to “execute”. Simply use one cycle for GET and PUT and zero cycles for HALT in your computations.

9. Program analysis, that is, figuring out how long a piece of code takes to execute, is a very deep subject. This text will consider this topic a little
later. But be ye forewarned- there are volumes written on this subject. This text will not give it a complete treatment.
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The following table provides the exact timings for the current example: 335 Use the SIM886 Enter
command.
Address Code Instruction Cycles
0 1F LOAD DX, 5 8, const is at odd adrs
1 05
2 00
3 17 LOADCX, 0 7, const is at even adrs
4 00
5 00
6 07 LOADAX, 0 8 constisat odd adrs
7 00
8 00
9 F1 GET BX 1
A 41 ADD AX, BX 7
B 57 ADD CX, 1 9, const is at even adrs
C 01
D 00
E B3 IFLT CX, DX, 0009 10, const is at odd adrs
F 09
10 00
11 F8 PUT AX 1
12 EO HALT 0
13

As written, this code will take exactly 159 clock cycles to execute. Note too bad, but it can
be made faster by simply moving the instructions around. Consider the following code which
does exactly the same thing:

load dx, 5
load c¢x, O
load ax, O
| p: add cx, 1
get bx
add ax, bx
iflt cx, dx, Ip
put ax
hal t

3.37  Provide the machine code for the above program assembled beginning
at address 0001
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3.38  How many cycles (exactly) will the above code take to execute?

You must be very careful when letting cycle counts control the way you write code. Cycle counting is something
you should put off until the very end of the optimization cycle. Generally, there are lots of other optimizations you
should do before relying on arcane techniques like cycle counting. Cycle counting tends to make your code harder to
read and very inflexible. As an example, suppose you decide to add a single one-byte instruction to the beginning of this
program. That would wipe out all the work you put into optimizing the code. Since programs tend to change quite a bit,
optimization achieved by counting cycles and rearranging instructions, as above, is often wasted effort.

On the other hand, cycle counting is a technique available to assembly language programmers and should not be
overlooked. Compilers use this technique to generate better code. You're putting yourself at a disadvantage if you're not
aware of this optimization technique. For often-called library routines which are fully debugged, cycle counting can
often produce dramatic results (especially on pipelined and superscalar CPUs).

There are a couple of optimizations we can yet perform to get the speed of this program down some more. The pre-
vious optimization consisted solely of code motion, that is, moving instructions around. You can also improve the execu-
tion time of this code segment by using different instructions to accomplish the same task. Consider the following code:

load c¢x, O
load ax, cXx

load dx, 5
| p: get bx
add cx, 1

add ax, bx
iflt cx, dx, Ip
put ax

hal t

3.39  Assemble this code beginning at address 0001 and provide the machine code

340  How many clock cycles (exactly) will this code take to execute?

3.6

Lab

Using the Built-in “Mini-Assembler”

The SIM886 program contains a built-in miniassembler module. This allows you to enter programs using x86 mne-
monics rather than hexadecimal opcodes. This assembler does not provide many of the features you'd expect from a
normal assembler (like MASM), but it is easier to use than the Enter command for enter x86 machine instructions.

To use the miniassembler, simply type “A” followed by the address where you wish the first instruction placed:
A address

SIM886 will prompt you to enter an x86 machine instruction. After you enter the instruction and hit the [e=r] key,
SIM886 will respond by printing the opcode and instruction, it will then expect you to enter a new assembly language
instruction. You can continue entering instructions in this fashion until you've entered all your instructions. Hitting the

[eer] key by itself on a line will terminate instruction entry.

Although the SIM886 Assemble command lets you enter instructions like “LOAD AX, 1234” it does not let you use
symbolic labels for addresses and constants. In particular, you cannot use statement labels like the “Ip:” label employed
in the previous examples. You have to supply the hexadecimal address as the target of an IFxx or GOTO instruction. This
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isn't too hard if you're jumping backwards (as in the previous example), it is a problem if you're
jumping forward and you haven't figured out the target address.

There are two ways to handle this problem. The first is to figure out the length of each
instruction in your program. This is much easier to do than figuring out the opcodes since all
instructions without a constant are one byte long, those with a constant are all three bytes long.
Once you know the length of each instruction, you can figure out the address of each instruction
(by summing the lengths of the previous instructions). If you write all this down on a sheet of
paper before you enter your program, you'll know the target address of all jumps (IFxx and
GOTO instructions) when you enter them.

A second alternative is to enter an arbitrary address (like zero) whenever you have a for-
ward jump. Later on, when you enter the target instruction, you can go back and patch the jump
to the target location. Consider the following code:

LBL1: |FLT AX, BX, LBL2

GET AX

G&Oro LBL1
LBL2:

When using the assemble command, you'll know the address to supply for the GOTO
instruction (zero if you begin assembling this code at address zero). That's because SIMN886
prints the address of each instruction as it assembles it. However, when you enter the IFLT
instruction, you really won't know the address associated with LBL2 until after you enter the
GOTO instruction (assuming you haven’'t computed this manually beforehand). Suppose, how-
ever, that you entered the following:

0:  IFLT AX, BX, O
3 GET A

4 GOTO 0

7: (o]

After entering these instructions, it's clear that the target address for the IFLT instruction is seven.
Although you've already entered the (incorrect) target address of zero, there is nothing stopping
you from using the miniassembler to replace the IFLT instruction with the correct version. You
can do this by typing “A address_of IFLT” and then reenter the correct IFLT instruction, e.g.,

AO
0: IFLT AX, BX, 7
3 [l

While the miniassembler isn't perfect, using it will speed your data entry considerably. Although
this is a big step above hand assembling instructions yourself, just wait— a real assembler is
vastly better yet.

3.7

Simple x86 Programming Techniques

While proficiency at x86 machine language programming isn’t desirable, you will need to
know a little bit about x86 programming in order to successfully complete the laboratory exer-
cises. This section discusses some elementary programming techniques you can use when creat-
ing x86 machine language programs.

A variable’s value is generally kept in a register or a memory location. Since the x86 hypo-
thetical processors only have four registers, it is unlikely you will be able to keep all your vari-
ables in the registers for any non-trivial program. Therefore, you will need to keep most of your
variables in memory locations and load them into CPU registers when you need to use their val-
ues. The x86 processors only provide 16 bit registers, therefore they operate on word values;
hence, your memory variables will generally require two bytes each. To “create” a variable all
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3.36 No, the IFLT instruction
would transfer control to
location 0009, not 1009
which is the new location of
the GET instruction.

3.37 1F 05 00, 17 00 00, 07
00 00, 57 01 00, F1, 41, B3 09
00, F8, EO
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you do is choose a pair of bytes in memory and use those two memory locations to hold the value of the variable. The
only thing to remember is that each variable should have its own unique location in memory. If you use the same loca-
tion for two separate variables, they will interfere with one another.

Keep in mind that the x86's memory space is an array of bytes. Therefore, each variable will require two consecutive
bytes in memory. To initialize a variable with a value before your program runs, you can use SIM886's enter command to
store a value into the memory locations you reserve for a variable.

Some of the laboratory exercises use arrays of data. An array is nothing more than a contiguous sequence of vari-
ables in memory. For example, an array containing five values would simply be ten consecutive bytes (one word for
each of the five values in the array). To obtain the value of an array element, you would normally use the xxxx[bx]
addressing mode. The xxxx displacement should be the address of the first element of the array. Then you can use the
value in bx to select an element of the array. Since each element of the array is two bytes long, bx will need to contain
even values to properly select an array element. For example, if you decide to store a ten element array starting at loca-
tion 8000h in memory, the first element will be at address 8000h, the second will be at 8002h, the third will be at 8004h,
etc. For example, suppose memory location 7000h contains an index (0..9) into the array of ten items starting at address
8000h and you want to load that particular array element into the ax register. You could use the following code to
accomplish this:

|l oad bx, [7000] Get index into the array.
add bx, bx Doubl e bx’ s val ue
|l oad ax, 8000[ bx] Get desired array el ement.

Since all computations must take place inside the CPU, you must load any values you want to add or subtract into
registers. For example, if you want to add the values at locations 1000 and 1002 together and then subtract the word at
memory location 1010 from this sum and store the result at location 1008, you would use code like the following:

|l oad ax, [1000]
add ax, [1002]
sub ax, [1010]
store ax, [1008]

To make decisions or create loops in your programs, you will need to use the ifxx and goto instructions. Using
these instructions requires a little more work because you need to know the target address of the instruction they (may)
jump to. For example, you may want to add one to memory location 800 if it is less than or equal the value in memory
location 1000. In pseudo-code, this is fairly trivial:

if (memory[800] <= memory[1000]) then
memory[800] := memory [800] + 1;

The standard way to translate this into assembly code is to jump around the code that increments memory location
800 ifitis not less than or equal to the value at location 1000:

|l oad ax, [800]

|l oad bx, [1000]
ifgt ax, bx, ????
add ax, 1

store ax, [800]
2?2?27

Note that “greater than” is the opposite of “less than or equal.”

The only problem is that we don’t know the target address. This is especially problematic when jumping to code
that has yet to be written (as is the case above when writing the ifgt instruction). The solution is to enter any value for
the target address (most people use zero). Later, when you know the actual address of the target instruction, you can go
back and reenter the ifgt instruction using the correct target address. For example, first you would enter the following:

0- | oad ax, [800] Addr esses supplied by SIM86's
3- |l oad bx, [1000] assenbl e command.

6- ifgt ax, bx, O Just use zero for now.

9- add ax, 1

C store ax, [800]

F- Target address is OF
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After entering this code, we know that the target address is OFh. Therefore, we can go back
and reenter the ifgt instruction with the proper address. Since the ifgt instruction is at address six,
you can use the SIM886 “A 6” command to do this:

A6
6- ifgt ax, bx, OF

To continue adding additional instructions to your program, you can continue assembly by using
an “A OF” command.

Although the x86 processors only provide if instructions that test for less than, equal, or
greater than, it is easy to test for less than or equal, greater than or equal, or not equal. The fol-
lowing code sequences demonstrate how to transfer to location OF on these three conditions:

iflt ax, bx, OF test for <=
ifeq ax, bx, OF
< drop down here if greater than >

ifgt ax, bx, OF test for >=
ifeq ax, bx, OF
< drop down here if less than >

ifgt ax, bx, OF test for not
equal
iflt ax, bx, OF
< drop down here if equal >

Loops are another common control structure you will need to use in your programs. The
easiest loop construct to implement with x86 code is the repeat..until loop. This type of loop
executes some code, tests and condition, and then repeats this process if the condition requires.
If you need to execute a section of code a fixed number of times, the repeat..until construct is
easiest to use. The following code example demonstrates how to store zeros into the five ele-
ments of an array starting at location 1000h:

0- load bx, O Starting array index
3- load dx, 10 Five iterations

6- load ax, O Zeros we will wite
9- store ax, 1000[ bx] Wite a zero to the
array

C add bx, 2 Move to next array
el ement

F- iflt bx, dx, 9 Repeat five tines
12- hal t

Note that this loop compares bx with 10 on each loop iteration. This is because it adds two to

bx since each array element is two bytes long. Therefore, the loop terminates after executing
five times.

The second type of loop you will commonly use is the while loop. Unlike the repeat..until
loop, the while loop tests the termination condition at the beginning of the loop, before it exe-
cutes the body of the loop. The following sample program scans through the array at memory
location 8000h searching for the first zero value, adding one to all non-zero values, stopping
when it encounters a zero value. Note the use of the [bx] addressing mode vs. the xxxx[bx]
addressing mode found in the previous example:

0- load ax, O The val ue to search for
3- | oad bx, 8000 Start of our array

6- load cx, [bx] Get next array el enent
7- ifeq cx, ax, 16 Qit if this is a zero
A- add cx, 1 Add one to this value

D store cx, [bx] Store back to nenory.
10- add bx, 2 Move on to next el enent.
13- goto 6 Repeat | oop

16- hal t
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3.39 1700 00, 02, 1F 05 00,
F1, 570100, 41, B3 08 00, F8,
EO

3.40 150
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For more information on encoding various high level language control constructs in an assembly language, see the
chapter on control structures in the textbook. These simple examples should suffice for now; with them you should be
able to easily code the various programming projects necessary for the laboratory exercises.

3.8 The SIM886 Laboratory Exercises

In this laboratory you will experiment with the SIM886 program. You will hand assemble, enter, and execute short
886 programs. You will observe the action of the program and note the execution times of the program. Finally, you will
attempt to optimize your programs using code motion.

3.8.1 Before Coming to the Laboratory

Your pre-lab report should contain the following

A copy of this lab guide with all the questions answered.
A write-up on the SIM886 program explaining, in your own words, how to use each of the commands
available in the debugger.

* A write-up on the 886 explaining, in your own words, how each of the instructions and addressing modes
operate.

See Chapter Two of this laboratory manual for an example pre-lab report.

Note: your Teaching Assistant or Instructor may elect to give a quiz before the lab begins on the material covered in
the laboratory. You will do quite well on that quiz if you've properly prepared for the lab and studied up on the stuff
prior to attending the lab. If you simply copy the material from someone else you will do poorly on the quiz and you will
probably not finish the lab. Do not take this pre-lab exercise lightly.

3.8.2 Questions for the Laboratory Exercises

341  How do you turn on the printer to capture screen output?

342  What SIM886 command could you use to send the screen output to a text file?

343  What is the command that instructs SIM886 to read its input from a text file?

344  What SIM886 command do you use to load and assemble the LAB3_3.886 text file?
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3.8.3 Laboratory Exercises

In this laboratory you will perform the following activities:

« Demonstrate the use of the SIM886 debugger and all of the commands in the
debugger
Demonstrate the operation of all the 886 instructions and addressing modes.
Enter several 886 machine language programs into the debugger and single step
through the programs to execute them.
Use the debugger to modify the operation of the programs.
Explore a technique known as self modifying code.

0 Exercise 1: The SIM886 debugger. Demonstrate the use of each of the debugger com-
mands in the SIM886 program. Turn on the printer or capture screen output to a file to
create a log of your work. Include this printout with your lab report. As usual, you
should go through this exercise once before turning on the printer or screen capture,
just to make sure you understand what you're supposed to be doing. Although you're
not expected to produce a perfect printout (everyone is going to make a few mistakes)
there is no need to include pages and pages of errors in your printout because you
couldn't figure out what you were doing while the printer or screen capture was run-
ning.

To reduce the amount of time you spend in the laboratory, you should create a small
text file containing all the commands you want to execute before coming to the labora-
tory. Then instruct SIM886 to read these commands from that text file rather than from
the keyboard.

O Exercise 2: Machine code. The following is a short 886 program that inputs a value
from the user and then reads that many integers from the user in a loop, produces the
sum of those integers, and then prints the result. For example, if the user enters three,
the program would prompt the user for three different numbers and then display the
sum of those three numbers.

A O

get CcX

load bx, O
load dx, bx
ifeq cx, dx, 10
get ax

add bx, ax
sub cx, 1

goto 5
put bx
hal t

Note: when actually executing this program, always use small values when specifying
how many integers to enter. Otherwise the program will take too long to execute.

Encode this program using machine code and enter it into memory using the SIM886
enter command. Use the unassemble command to verify the correctness of your
opcodes.

For your lab report; explain, in detail, how you generated each opcode for the
instructions in this program. Capture your use of the Enter command while inputting
the opcodes. Include this in your lab report. Run the program and capture its output
(or send the output to a printer). Include this output in your lab report.

For the remaining programs in this laboratory, you can use SIM886's built-in minias-
sembler to input your programs.
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For additional credit; Also input the program above using the SIM886 assemble command. Capture this pro-
cess to a text file and include it with your lab report.

3.45  Provide the machine code for the following program:

Address Code Instruction

0 GET CX

1 LOAD BX, 0
2

3

4 LOAD DX, BX
5 IFEQ CX, DX, 10
6

7

8 GET AX

9 ADD BX, AX
A SUB CX, 1

B

C

D GOTO5

E

F

10 PUT BX

11 HALT

0 Exercise 3: Assembly code. The following short program reads two values from the user, a count and an
address. It then writes count zero words to memory starting at address.

A0
get cX ; The count goes here
get bx ; The address goes here
load dx, O

|l oad ax, dx
ifeq cx, dx, 13
store ax, [bx]

2

add bx, ;Each word in menory is two bytes!
sub cx, 1

goto 6

hal t

This program is available on the diskette accompanying this manual (LAB3_3.886). Load this program into
memory.

Step through the program one instruction at a time. Look at the memory locations pointed at by the BX register.
Verify that this code is zeroing out sequential words in memory with each iteration of the loop.

Note that this code increments bx by two on each iteration of the loop. This is because each word consumes
two bytes of memory and we need to point bx at a new word after each iteration of this loop.

For your lab report: Capture your session while you are running this program to a text file. Insert comments
into the output (handwritten is okay if you dump the output to a printer) to describe what is going on during
the execution of the code. Be sure to specify a small number of locations to zero (e.g., five).Suppose we had
only added one to bx on each iteration of the loop. How many bytes would contain zero after executing this
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new version of the code given the two inputs 5 and 1007 (hint; think this one through
carefully.)

For additional credit: modify the program so that you only add one to bx on each
iteration of the loop. Run the program and capture the output. Be sure to dump the
affected memory locations after each execution of the store instruction. Describe what
is going on in your lab report.

Exercise 4. Cycle counting. The following programs computes the sum of ten numbers
starting at address 100h in memory. Using the execution times for the 886 processor
given in your textbook, try to guess how long each instruction in this program will take
to execute:

AO
load c¢x, 20
load bx, 100
load ax, O
add ax, 100[ bx]
add bx, 2
ifeq bx, cx, 15
goto 9
put ax
hal t

For your lab report: Run this program using the SIM886 Go command and the global
cycle counter. Compare the actual cycle times SIM886 reports against the cycle times
you predict. Be sure to describe any differences and discuss why your predictions were
incorrect (unless you are among the 1% who got it right).

Note: this program appears on the diskette accompanying this lab manual
(LAB4_3.886).

Exercise 5: Effect of operand alignment. Repeat exercise four with the following slight
modification to the above program:

AO
load c¢x, 20
load bx, 100
load ax, O
|l oad ax, ax ;Effectively a NOP
add ax, 100[ bx]
add bx, 2
ifeq bx, cx, 16
goto a
put ax
hal t

For your lab report: Discuss why the timing for this program is quite a bit different
from the one in exercise four.

Note: this program appears on the diskette accompanying this lab manual
(LAB5_3.886).

Exercise 6. Wait states. Repeat exercise five, except set the number of wait states to
one. Repeat it again with the number of wait states set to two.

For your lab report: Discuss the effects of adding wait states to memory. In particu-
lar, discuss the performance loss between zero and one wait states and the perfor-
mance loss (percentage) between one and two wait states. Which causes the greatest
loss of performance (percentage)? Discuss how a cache might alleviate this problem.
For additional credit: Predict the effect of adding additional wait states to memory.
Then try it and see how close you come to being right.

Exercise 7: Self-modifying code. Von Neumann machines use the same memory to
store instructions as data. This opens up the possibility that a program could actually

80x86 Based Systems
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keys to toggle the printer on
and off.

3.42 Cfilename

3.43 | filename
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rewrite itself on the fly. That is, the program could fetch some data, store it into memory somewhere, and then
GOTO this data just stored into memory. Consider the following short instruction sequence:

0000: |l oad ax, 001Fh
0003: store ax, [000Ch]
0006: | oad ax, OEOOOh
0009: store ax, [OOOFh]
ooocC.

00O0F:

The first four instructions store the bytes 1F, 00, 00, and EO starting at location 000C (which just happens to be
the first byte after the second STORE instruction above. If you disassemble these four bytes, you'll discover that
they correspond to the instructions “LOAD DX, 0" and “HALT". So after this code segment executes the four
instructions above it will load DX with zero and then stop.

To the beginning programmer self-modifying code looks really neat. After all, what could be more clever than
a program which writes part of itself? Sounds like something out of Star Trek or some science fiction novel. In
reality, there are many reasons to avoid using self-modifying code in your programs. First of all, most modern
processors are sufficiently powerful that self-modifying code is not required.

Another way to use self-modifying code is to support indirection. Consider the following short code sequence:
2000: load ax, [1000h]

load bx, 2001h
add bx, 2
store bx, 2001h

goto 2000

This short example fetches the word starting at location 1000h into AX and (presumably) performs some
manipulations on that value. Later in the code it fetches the value from address 2001h. This is the address of the
16-bit constant in the LOAD AX, 1000h instruction! It adds two to this value and stores it back to location
2001h. This effectively changes the LOAD AX, [1000h] instruction to a LOAD AX, [1002h] instruction. Each time
through the loop this program modifies the instruction at address 2000h to fetch a different value from memory.

As you've probably figured out already, there are easier ways of accomplishing this task (fetching successive
words from memory) on the 886 processor; just use the [BX] or xxxx[BX] addressing modes. However, it's
worth taking a look at self-modifying code for one very important reasons— many programs accidentally mod-
ify themselves. That is, bugs in the program cause it to store data over valid instructions whereupon the CPU
executes those instructions with disastrous results. It is important that you realize that programs can and will
modify themselves if you are not careful.

The following code is a slight modification to the program in exercise three. However, it uses self-modifying
code rather than indirection to access memory. Enter this program (LAB7_3.886 on the diskette) and run it.
Between each iteration of the loop, unassemble the program to see how this code modifies itself.
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AO 344 F2
get  cx : The count goes here OF 0000
get [0c] ; The address goes here £10m
load dx, O F0
|l oad ax, dx 48
ifeq cx, dx, 1d 770100
store ax, [O0] EF 0500
load bx, [Oc] o
add bx, 2

store bx, [0c]
sub cx, 1
goto 6

hal t

0 Exercise 8: Synthesizing other instructions. As you may have noticed, the instruction
set of the x86 processor family is quite small - it only has 11 instructions. However, it is
very easy to synthesize the operation of other types of instructions using these 11 345 |LAB3 3.886
instructions. For example, consider the following statements that compute the logical 3.46
AND of ax and bx leaving the result in ax, assuming ax and bx contain zero or one:

1000: ifeq ax, bx, 1006
1003: load ax, O

If ax is equal to bx, then they are both one or they are both zero. In either case, the
value in ax is the result of ax AND bx. If they are not equal to one another, then one of
the two registers contains zero so the result must be zero. The code above handles this
task.

Another important pair of instructions missing from the x86 instruction set is the sub-
routine call and return instructions. It is easy to transfer control to a subroutine using
the GOTO instruction, the only problem is how does the subroutine know where to
return control when it completes execution? The trick is to have the calling routine sup-
ply a return address when it calls the subroutine. The subroutine then jumps to this
return address when it wants to return to the caller. Consider the following code

sequence:

100: |l oad ax, 109 ;109 is the return address.
103: store ax, [1000] ; Save return address here
106: goto 1002 ;Routine starts at 1002
109: ; Subroutine returns here
1002: load dx, O ; Comput e NOT BX

1005: ifeq bx, dx, 100E ;See if BXis O or 1
1008: load bx, O ;1 f bx=1, set it to O
1008B: goto [1000] ;Return to caller
100E: load bx, 1 ;1T bx=0, set it to 1
1011: goto [1000] ;Return to caller

Assemble the code above and trace through it to verify proper operation.

For your lab report: Discuss how the subroutine call and return operations work.
Run the program and include a screen capture with your lab report.

For additional credit: Write a subroutine that computes the logical OR of the cx and
dx registers. Run your code, capture the output, and include the screen capture with
your lab report.

0 Exercise 9: Memory-mapped 1/0. In addition to the GET and PUT instructions, the x86
processors support memory mapped 1/0. Memory mapped 1/0 systems use memory
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locations as the interface to external devices. SIM886 provides support for 12 memory-mapped 1/0 devices: the
eight LEDs and four switches on the circuit you built for Chapter Two's laboratory. Memory locations OFFEOh
through OFFEFh correspond to the eight LEDs. SIM886 writes the L.O. bit of each of these eight words (FFEQ/
FFF1, FFE2/FFE3, FFEA4/FFES, etc.) to the corresponding LEDs. These are read/write locations. You can read
any value you write to these locations. Memory locations FFF8/FFF9, FFFA/FFFB, FFFC/FFFD, and FFFE/FFFF
are read-only locations. Any value you write to these memory locations will be lost. These memory locations
will contain zero or one depending upon the status of the corresponding switch. If you read a one, then the
corresponding switch is in the on position. If you read a zero, then the switch is in the off position. Consider the

following program:

AO

| oad
store
add
store
| oad
store
add
store
| oad
store
add
store
| oad
store
add
store
goto

The program above will continually read the switches and write their values and their inverted values to the
LEDs until you press on the keyboard.

For your lab report: Enter and run the code above. Describe the operation of this program in your lab report.
For additional credit: After reading the switch inputs, compute some logic functions based on those inputs

ax,
ax,
ax,
ax,
ax,
ax,
ax,
ax,
ax,
ax,
ax,
ax,
ax,
ax,
ax,
ax,
0

and write the function results to the LEDs.
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: Read SWL
;Wite value to LEDO
; Tricky way to invert
:Wite inverted val ue
: Read SW2
;Wite value to LEDL

;Wite inverted val ue
; Read SWB
:Wite value to LED2

:Wite inverted val ue
; Read SW
:Wite value to LED3e

:Wite inverted val ue
; Repeat forever.

L.O bit.

to LEDA4

to LED5

to LED6

to LED7



3.9

Programming Projects

Program #1: The x86 processors do not have a multiply instruction. Obviously it is
sometimes necessary to multiply two values together. One way to perform a multipli-
cation is to add a number to itself some number of times. Given two integers in loca-
tions 1000 and 1002, write a short code sequence which multiplies these two integers
together and prints their product then terminates. Implement this code inside SIM886
using the miniassembler. Trace through the program after initializing location 1000
with 3 and 1002 with 4. Produce a print-out of the trace. Try running the program at full
speed (using the “GO” command) with larger values in locations 1000 and 1002.

Program #2: Modify the above program so that it reads the two integers from the key-
board before multiplying them.

Program #3: The x86 processors do not have a division instruction. However, you can
simulate division in software using repeated subtractions (and counting the number of
times you can subtract the divisor from the numerator). Design an x86 division algo-
rithm. Trace through the algorithm for small values. Use the GO command when divid-
ing large numbers by small numbers. Hint: the IFLT and IFGT instructions deal with
unsigned numbers only. You can simulate a test for less than zero by checking to see if
one value is greater than 7fffh. For the division algorithm you will want to subtract the
divisor from the numerator until the numerator is less than zero. The number of sub-
tractions you've performed, minus one, is the quotient.

Program #4: Write a short program which inputs two numbers, doubles the first value
the number of times specified by the second, and prints the result. Note: to multiply a
value by two, load it into a register and add that register to itself. Create a loop to add
the register to itself the number of times specified by the second input value.

Program #5: Write a short program that will compute the sum of n numbers in memory,
where the user supplies the starting address and the number of entries to add together.

Program #6: Write a subroutine that expects an address in BX, a count in CX, and a
value in AX. It should write CX copies of AX to successive words in memory starting at
address BX. Write a main program that calls this subroutine several times. Use the sub-
routine call and return mechanism described in the laboratory exercises.

Program #7. Write a subroutine that computes the logical OR of the values (zero or
one) in the AX and BX registers. Call this subroutine three or four times from your main
program with different values in AX and BX. Use the subroutine call and return mecha-
nism described in the laboratory exercises.

Program #8: Write a subroutine that extracts a bit from a 16-bit number. The subroutine
should expect the number in the AX register and it should return the bit position of the
highest-order set bit in the number. Return OFFFFh if AX contains zero.

Program #9: Write the generic logic function for the x86 processor. Hint: “add ax, ax”
does a shift left on the value in AX. You can test to see if the high order bit is set by
checking to see if AX is greater than 32,767.

Program #10: Write a program that reads the generic function number for a four-input
function from the user and then continually reads the switches (using the memory-
mapped I/0 scheme, see the laboratory exercises) and writes the result to the LEDs.
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3.10 Answers to Selected Questions

1. CPU, Memory, I/0.

6a. 8 6f. 32

Ta. 20 7. 32

10/286 1 2 1 2 1 2

16. The clock frequency is the reciprocal of the clock period.

20a. 1 20c. 2

21. There are other delays in the system due to buffers, latches, and decoding which sit between the CPU and memory.
26. Generally the CPU reads several consecutive words (a cache line) into the cache at one time. This saves having to

fetch groups of consecutive bytes from memory on each access.

28a. Four out of five accesses require 0 wait states (total 1 cycle each). One out of five accesses requires a total of 11
clock cycles (10 wait states). Total for five accesses is 15 clocks producing an average of 2 wait states per memory
access (3 clocks per memory access minus the one clock which the CPU normally requires).

33. The prefetch queue allows the CPU to overlap fetching one instruction with the execution of the previous instruc-
tion. Consider the two instruction sequence “add ax, bx" and “store ax,[1000h]". While the CPU executes the
“add ax, bx" operation, the busses are free and the CPU can, in parallel, fetch the opcode bytes for the “store
ax,[1000h]" instruction.

40. If you have separate instruction and data caches the CPU can fetch instruction opcodes and data operands during
the same clock cycle, thereby executing these operations in parallel. Without the cache, the CPU would have to exe-
cute separate memory cycles for each fetch.

44, AL, BL, CL, DL, AH, BH, CH, DH

52. Carry, Overflow, Zero, and Sign flags are the condition codes.
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Instruction
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Machine Language Coding Form #2:

Address | Code | Instruction Cycles
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