
1
Basic Concepts
This chapter is excerpted from Assembly Language for Intel-Based Computers, by Kip R. Irvine. Copyright Prentice-Hall Publishing,
2003. All rights reserved. You may print a copy of this chapter, but you may not extract or copy text or illustrations from this document to
use in any other publication.

1.1 Welcome to Assembly Language
1.1.1 Some Good Questions to Ask
1.1.2 Assembly Language Applications
1.1.3 Section Review

1.2 Virtual Machine Concept
1.2.1 The History of PC Assemblers
1.2.2 Section Review

1.3 Data Representation
1.3.1 Binary Numbers
1.3.2 Binary Addition
1.3.3 Integer Storage Sizes
1.3.4 Hexadecimal Integers
1.3.5 Signed Integers
1.3.6 Character Storage
1.3.7 Section Review

1.4 Boolean Operations
1.4.1 Truth Tables for Boolean Functions
1.4.2 Section Review

1.5 Chapter Summary

1.1 Welcome to Assembly Language

This book, entitled Assembly Language for Intel-Based Computers, focuses on programming
Intel microprocessors, specifically members of the Intel IA-32 processor family. The IA-32 fam-
ily began with the Intel 80386, and continues on through the current Pentium 4. Assembly lan-
guage is the oldest programming language, and of all languages, it bears the closest resemblance
to the native language of a computer. It provides direct access to a computer’s hardware, making
it necessary for you to understand a great deal about your computer’s architecture and operating
system.

Educational Value Why do you have to read this book? Perhaps you’re taking a college
course whose name is similar to one of these:

• Microcomputer Assembly Language
• Assembly Language Programming

2 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

• Introduction to Computer Architecture

• Fundamentals of Computer Systems

• Embedded Systems Programming

In fact, these are names of actual courses at colleges and universities that used the third edition
of this book. You will probably find that this book contains more assembly language techniques,
reference information, and examples than you can possibly digest in a single semester.

If you are in a course whose name includes either the word architecture or fundamentals,
this book will give you some basic principles about computer architecture, machine language,
and low-level programming that will stay with you for years to come. You will learn enough
assembly language to test your knowledge on today’s most widely used microprocessor family.
You won’t be learning to program a "toy" computer using a simulated assembler; this is the real
thing, the same one used by the professionals. You will learn the architecture of the Intel IA-32
processor family from the programmer’s point of view.

If you are in doubt about the value of spending endless hours studying the low-level details
of computer software and hardware, perhaps you can find inspiration in the following quote
from a lecture given by one of the greatest computer scientists of our time, Donald Knuth:

"Some people [say] that having machine language, at all, was the great mistake
that I made. I really don't think you can write a book for serious computer pro-
grammers unless you are able to discuss low-level detail."1

Web Site Before you go any farther, visit the book’s Web site to see the extra support informa-
tion and workbook exercises you can use:

http://www.nuvisionmiami.com/books/asm

There are always new workbook tutorials, interesting example programs, corrections to errors in
the text, and so on. If for some reason the given URL is not available, you can reach the book’s
Web site through Prentice Hall’s URL (www.prenhall.com). Search for "Kip Irvine".

1.1.1 Some Good Questions to Ask

Maybe we can answer some of your questions about this book and how it can be used.

What background should I have? Before reading this book, you should have completed a
single college course or its equivalent in computer programming. Most students learn C++, C#,
Java, or Visual Basic. Other languages will work, provided they have similar features.

1. Donald Knuth: MMIX, A RISC Computer for the New Millennium, Transcript of a lecture given at the Massa-
chussetts Institute of Technology, December 30, 1999.

1.1 Welcome to Assembly Language - DEMONSTRATION COPY 3

What is an assembler? An assembler is a program that converts source-code programs from
assembly language into machine language. The assembler can optionally generate a source list-
ing file with line numbers, memory addresses, source code statements, and a cross-reference
listing of symbols and variables used in a program. A companion program, called a linker, com-
bines individual files created by an assembler into a single executable program. A third program,
called a debugger, provides a way for a programmer to trace the execution of a program and
examine the contents of memory. Two of the most popular assemblers for the Intel family are
MASM (Microsoft Assembler) and TASM (Borland Turbo Assembler).

What hardware and software do I need? You need a computer with an Intel386, Intel486,
or one of the Pentium processors. All of these belong to the IA-32 processor family, as Intel calls
it. Your operating system may be some version of Microsoft Windows, MS-DOS, or even Linux
running a DOS emulator. The following are either required or recommended:

• Editor: You need a simple text editor that can create assembly language source files. You
can use TextPad by Helios Software, which is supplied on the CD-ROM with this book. Or
you can use NotePad (free with Windows), or the Microsoft Visual Studio editor (used
with Visual C++). Any other editor that produces plain ASCII text files will do also.

• Assembler: You need Microsoft Assembler (MASM) Version 6.15, supplied free with this
book on a CD-ROM. Update patches, as they become available, can be downloaded from
the Microsoft Web site. If you absolutely must use the Borland Turbo Assembler, you’ll be
happy to know that Borland-compatible versions of the book’s example programs are
available on the author’s Web site.

• Linker: You need a linker utility to produce executable files. We supply two linkers on the
CD-ROM with this book: The Microsoft 16-bit linker, named LINK.EXE, and the
Microsoft 32-bit linker, named LINK32.EXE.

• Debugger: Strictly speaking, you don’t need a debugger, but you will probably want one.
For MS-DOS programs, MASM supplies a good 16-bit debugger named CodeView.
TASM supplies one named Turbo Debugger. For 32-bit Windows Console programs, our
preferred debugger is Microsoft Visual Studio (msdev.exe), part of Microsoft Visual C++.

What types of programs will I create? You will create two basic types of programs:

• 16-Bit Real-Address Mode: If you’re running either pure MS-DOS or a DOS emulator,
you can create 16-bit Real-address mode programs. Most of the programs in this book
have been adapted for your use, in special directories named RealMode on the disk
accompanying this book. There are notes throughout the book with tips about program-
ming in Real-address mode, and two chapters are exclusively devoted to color and graph-
ics programming under MS-DOS.

• 32-Bit Protected Mode: If you’re using Microsoft Windows, you can create 32-bit Pro-
tected mode programs that display both text and graphics.

4 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

What do I get with this book? You get a lot of printed paper. On the CD attached to the
book, you get a complete copy of the Microsoft Assembler, version 6.15. You get a collection of
example programs on the CD. Best of all, you get a whole lot of information on the author’s Web
site, including:

• Updates to the example programs. No doubt some of the programs will be improved and
corrected.

• The Assembly Language Workbook, a constantly expanding collection of practice exer-
cises covering topics from all over the book.

• Complete source code for the book’s link libraries. One library is for 32-bit Protected
mode under MS-Windows; the other library is for Real-address mode programming under
MS-DOS or a DOS emulator. (Note: MS-Windows can also run Real-address mode pro-
grams.)

• Corrections to the book. Hopefully there won’t be too many of these!
• Helpful hints on installing the assembler and configuring different editors to run it. Two

editors I currently use are Microsoft Visual C++ and TextPad by Helios Software.
• Frequently asked questions. In the previous edition, there were about 40 of these.
• Additional topics on MS-Windows programming, graphics programming, and so on, that

could not be included in the printed book for lack of space.
• E-mail access to the author for corrections and clarifications directly related to the book.

But don’t ask me to help you debug your programming projects. That’s your professor’s
job.

• Solutions to programming exercises. In the previous editions, only professors were given
access to solution programs, but this turned out to be somewhat controversial. I was con-
tinually fending off e-mail requests for solutions by individuals who (said they) were self-
studying assembly language. (There will be additional suggested programming assign-
ments posted on the instructor Web, which will absolutely, positively be available only to
registered college instructors.)

What will I learn? Here are some of the ways this book will make you better informed about
computer architecture, programming, and computer science:

• You will learn some basic principles of computer architecture, as applied to the Intel IA-32
processor family.

• You will learn some basic boolean logic and how it applies to programming and computer
hardware.

• You will learn about how IA-32 processors manage memory, using real mode, protected
mode, and virtual mode.

• You will learn how high-level language compilers (such as C++) translate statements from
their language into assembly language and native machine code.

• You will learn how high-level languages implement arithmetic expressions, loops, and
logical structures at the machine level.

1.1 Welcome to Assembly Language - DEMONSTRATION COPY 5

• You will learn about data representation, including signed and unsigned integers, real
numbers, and character data.

• You will improve your machine-level debugging skills. Even in C++, when your programs
have errors due to pointers or memory allocation, you can dive to the machine level and
find out what really went wrong. High-level languages purposely hide machine-specific
details, but sometimes these details are important when tracking down errors.

• You will learn how application programs communicate with the computer’s operating sys-
tem via interrupt handlers, system calls, and common memory areas. You will also learn
how the operating system loads and executes application programs.

• You will learn how to interface assembly language code to C++ programs.
• You will gain the confidence to write new assembly language programs without having to

ask anyone for help.

How does assembly language relate to machine language? First, machine language is a
numeric language that is specifically understood by a computer’s processor (the CPU). Intel pro-
cessors, for example, have a machine language that is automatically understood by other Intel
processors. Machine language consists purely of numbers.

Assembly language consists of statements that use short mnemonics such as ADD, MOV,
SUB, and CALL. Assembly language has a one-to-one relationship with machine language,
meaning that one assembly language instruction corresponds to one machine-language instruc-
tion.

How do C++ and Java relate to assembly language? High-level languages such as C++
and Java have a one-to-many relationship with both assembly language and machine language.
A single statement in C++, for example, expands into multiple assembly language or machine
instructions.

Let’s find out first-hand how C++ statements expand into machine code. Most people can-
not read raw machine code, so we will show its closest relative, assembly language, instead. The
following C++ statement carries out two arithmetic operations and assigns the result to a vari-
able. Assume that X and Y are integers:

X = (Y + 4) * 3;

Following is the statement’s translation to assembly language. Note that the translation requires
multiple statements because assembly language works at a detailed level:

mov eax,Y ; move Y to the EAX register
add eax,4 ; add 4 to the EAX register
mov ebx,3 ; move 3 to the EBX register
imul ebx ; multiply EAX by EBX
mov X,eax ; move EAX to X

(Registers are named storage locations inside the CPU which are often used for intermediate
results of operations.)

6 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

The point in this example is not to show that C++ is "better" or more powerful than assem-
bly language, but to show how assembly language implements a statement in a high-level lan-
guage. The assembly language statements have a one-to-one correspondence with the
computer’s native machine language, which is a set of coded numbers with special meaning to
the processor.

Is assembly language Portable? An important distinction between high-level languages and
assembly language has to do with portability. A language whose source programs can be com-
piled and run on a wide variety of computer systems are said to be portable. A C++ program, for
example, should compile and run on just about any computer, unless it makes specific references
to library functions that only exist under a single operating system. A major feature of the Java
language is that compiled programs run on nearly any computer system.

Assembly language, on the other hand, makes no attempt to be portable. It is tied to a spe-
cific processor family, so there are a number of different assembly languages widely used today.
Each is based on either a processor family or a specific computer, with names such as Motorola
68x00, Intel IA-32, SUN Sparc, Vax, and IBM-370. The instructions in assembly language
match the computer’s instruction set architecture. For example, the assembly language taught in
this book works only on processors belonging to the Intel IA-32 family.

Why learn assembly language? Why not just read a good book on computer hardware and
architecture, and avoid having to learn assembly language programming?

• You may be working toward a degree in computer engineering. If so, there is a strong like-
lihood that you will write embedded systems programs. Such programs are written in C,
Java, or assembly language, and downloaded into computer chips and installed in dedi-
cated devices. Some examples are automobile fuel and ignition systems, air-conditioning
control systems, security systems, flight control systems, hand-held computers, modems,
printers, and other intelligent computer peripherals.

• Many dedicated computer game machines have stringent memory restrictions, requiring
programs to be highly optimized for both space and runtime speed. Game programmers
are experts at writing code that takes full advantage of specific hardware features in a tar-
get system. They frequently use assembly language as their tool of choice because it per-
mits total control over the creation of machine code.

• If you are working toward a degree in computer science, assembly language will help you
gain an overall understanding of the interaction between the computer hardware, operating

We? Who’s that? Throughout this book, you’re going to see constant references to we. Authors
of textbooks and academic articles often use we as a formal reference to themselves. It just
seems too informal to say, "I will now show you how to" do such-and-such. If it helps, think of
we as a reference to the author, his reviewers (who really helped him a lot), his publisher (Pren-
tice-Hall), and his students (thousands).

1.1 Welcome to Assembly Language - DEMONSTRATION COPY 7

system, and application programs. Using assembly language, you can apply and test the
theoretical information you are given in computer architecture and operating systems
courses.

• If you’re working as an application programmer, you may find that limitations in your cur-
rent language prevent you from performing certain types of operations. For example,
Microsoft Visual Basic doesn’t handle character processing very efficiently. Programmers
generally rely on DLL (dynamic link libraries) written in C++ or assembly language to
perform character operations such as data encryption and bit manipulation.

• If you work for a hardware manufacturer, you may have to create device drivers for the
equipment you sell. Device drivers are programs that translate general operating system
commands into specific references to hardware details. Printer manufacturers, for exam-
ple, create a different MS-Windows device driver for each model they sell. The same is
true for Mac OS, Linux, and other operating systems.

Are there any rules in assembly language? Yes, there are a few rules, mainly due to the
physical limitations of the processor and its native instruction set. Two operands used in the
same instruction, for example, must be the same size. But assembly language is far less restrict-
ing than C++.

Assembly language programs can easily bypass restrictions characteristic of high-level
languages. For example, the C++ language does not allow a pointer of one type to be assigned to
a pointer of another type. Ordinarily, this is a good restriction because it helps avoid logic errors
in programs. An experienced programmer can find a way around this restriction but in doing so
may end up writing code that is overly tricky. Assembly language, in contrast, has no restriction
regarding pointers. The assignment of a pointer is left to the programmer’s discretion. Of course,
the price for such freedom is high: an assembly language programmer spends a lot of time
debugging programs at the machine level.

1.1.2 Assembly Language Applications

In the early days of programming, most application programs were written partially or entirely
in assembly language because programs had to fit in a small area of memory and had to run as
efficiently as possible. As computers became more powerful, programs became longer and more
complex; this demanded the use of high-level languages such as C, FORTRAN, and COBOL
that contained a certain amount of structuring capability to assist the programmer. More
recently, object-oriented languages such as C++, C#, Visual Basic, and Java have made it possi-
ble to write complex programs containing millions of lines of code.

It is rare to see large application programs written completely in assembly language
because they would take too much time to write and maintain. Instead, assembly language is
used to optimize certain sections of application programs for speed and to access computer hard-
ware. Assembly language is also used when writing embedded systems programs and device

8 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

drivers. Table 1–1 compares the adaptability of assembly language to high-level languages in
relation to various types of computer programs.

C++ has the unique quality of offering a compromise between high-level structure and
low-level details. Direct hardware access is possible but completely non-portable. Most C++
compilers have the ability to generate assembly language source code, which the programmer
can customize and refine before assembling into executable code.

1.1.3 Section Review

1. How do the assembler and linker work together?

2. How will studying assembly language enhance your understanding of operating systems?

3. What is meant by a one-to-many relationship when comparing a high-level language to
machine language?

4. Explain the concept of portability as it applies to programming languages.

5. Is the assembly language for the Intel 80x86 processor family the same as those for com-
puter systems such as the Vax or Motorola 68x00?

Table 1–1 Comparison of Assembly Language to High-Level Languages.

Type of Application High-Level Languages Assembly Language

Business application soft-
ware, written for single
platform, medium to large
size.

Formal structures make it easy to
organize and maintain large sec-
tions of code.

Minimal formal structure, so one
must be imposed by program-
mers who have varying levels of
experience. This leads to diffi-
culties maintaining existing
code.

Hardware device driver. Language may not provide for
direct hardware access. Even if it
does, awkward coding techniques
must often be used, resulting in
maintenance difficulties.

Hardware access is straightfor-
ward and simple. Easy to main-
tain when programs are short and
well documented.

Business application written
for multiple platforms (dif-
ferent operating systems).

Usually very portable. The source
code can be recompiled on each
target operating system with mini-
mal changes.

Must be recoded separately for
each platform, often using an
assembler with a different syn-
tax. Difficult to maintain.

Embedded systems and
computer games requiring
direct hardware access.

Produces too much executable
code, and may not run efficiently.

Ideal, because the executable
code is small and runs quickly.

1.2 Virtual Machine Concept - DEMONSTRATION COPY 9

6. Give an example of an embedded systems application.

7. What is a device driver?

8. Is type checking on pointer variables stronger in assembly language or in C++?

9. Name two types of applications that would be better suited to assembly language than a
high-level language.

10. Why would a high-level language not be an ideal tool for writing a program that directly
accesses a particular brand of printer?

11. Why is assembly language not usually used when writing large application programs?

12. Challenge: Translate the following C++ expression to assembly language, using the exam-
ple presented earlier in this chapter as a guide: X = (Y * 4) + 3

1.2 Virtual Machine Concept

A most effective way to explain how a computer’s hardware and software are related is called
the virtual machine concept. Our explanation of this model is derived from Andrew Tanen-
baum’s book, Structured Computer Organization.2 To explain this concept, let us begin with the
most basic function of a computer, that of executing programs.

A computer is ordinarily constructed in such a way that it directly executes programs writ-
ten in what may be called its machine language. Each instruction in this language is simple
enough that it can be executed using a relatively small number of electronic circuits. For sim-
plicity, we will call this language L0.

But programmers would have a difficult time writing programs in L0 because it is enor-
mously detailed and consists purely of numbers. If a new language, L1, could be constructed
that was easier to use, programs could be written in L1. There are two ways to achieve this:

• Interpretation: As the L1 program is running, each of its instructions could be decoded
and executed by a program written in language L0. The L1 program begins running imme-
diately, but each instruction has to be decoded before it can execute.

• Translation: The entire L1 program could be converted into an L0 program by an L0 pro-
gram specifically designed for this purpose. Then the resulting L0 program could be exe-
cuted directly on the computer hardware.

Virtual Machines Rather than thinking purely in terms of languages, Tanenbaum suggests
thinking in terms of a hypothetical computer, or virtual machine, at each level. The virtual
machine VM1, as we will call it, can execute commands written in language L1. The virtual
machine VM0 can execute commands written in language L0, as shown below:

2. Andrew S. Tanenbaum. Structured Computer Organization, 4th Edition. 1999, Prentice-Hall.

10 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

Each virtual machine can be constructed of either hardware or software. People can write
programs for virtual machine VM1, and if it is practical to implement VM1 as an actual com-
puter, programs can be executed directly on the hardware. Or, programs written in VM1 can be
interpreted/translated and executed on machine VM0.

Machine VM1 cannot be radically different from VM0 because the translation or interpre-
tation would be too time-consuming. What if the language VM1 supports is still not program-
mer-friendly enough to be used for useful applications? Then another virtual machine, VM2, can
be designed which is more easily understood. This process can repeat itself until a virtual
machine VMn can be designed that supports a powerful, easy-to-use language.

The Java programming language is based on the virtual machine concept. A program writ-
ten in the Java language is translated by a Java compiler into Java byte code. The latter is a low-
level language that is quickly executed at run time by a program known as a Java virtual
machine (JVM). The JVM has been implemented on many different computer systems, making
Java programs relatively system-independent.

Specific Machines Let us relate this to actual computers and languages, using names like
Level 1 for VM1, and Level 0 for VM0, shown in Figure 1–1. Let us assume that a computer’s
digital logic hardware represents machine Level 0, and that Level 1 is implemented by an inter-
preter hard-wired into the processor called microarchitecture. Above this is Level 2, called the
instruction set architecture. This is the first level at which users can typically write programs,
although the programs consist of binary numbers.

Virtual Machine VM1

Virtual Machine VM0

1.2 Virtual Machine Concept - DEMONSTRATION COPY 11

Figure 1–1 Virtual Machine Levels 0 through 5.

Microarchitecture (Level 1) Computer chip manufacturers don’t generally make it possible
for average users to write microinstructions. The specific microarchitecture commands are often
a proprietary secret. It might require three or four microinstructions to carry out a primitive oper-
ation such as fetching a number from memory and incrementing it by 1.

Instruction Set Architecture (Level 2) Computer chip manufacturers design into the proces-
sor an instruction set that can be used to carry out basic operations, such as move, add, or multi-
ply. This set of instructions is also referred to as conventional machine language, or simply
machine language. Each machine-language instruction is executed by several microinstructions.

Operating System (Level 3) As computers evolved, additional virtual machines were created
to enable programmers to be more productive. A Level 3 machine understands interactive com-
mands by users to load and execute programs, display directories, and so forth. This is known as
the computer’s operating system. The operating system software is translated into machine code
running on a Level 2 machine.3

Assembly Language (Level 4) Above the operating system level, programming languages
provide the translation layers that make large-scale software development practical. Assembly

3. Its source code might have been written in C or assembly language, but once compiled, the operating system is
simply a Level 2 program that interprets Level 3 commands.

High-Level Language

Assembly Language

Operating System

Instruction Set
Architecture

Microarchitecture

Digital Logic Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

12 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

language, which appears at Level 4, uses short mnemonics such as ADD, SUB, and MOV that

are easily translated to the instruction set architecture level (Level 2). Other assembly language

statements, such as Interrupt calls, are executed directly by the operating system (Level 3).

Assembly language programs are usually translated (assembled) in their entirety into machine

language before they begin to execute.

High-Level Languages (Level 5) At Level 5 are languages such as C++, C#, Visual Basic,

and Java. Programs in these languages contain powerful statements that often translate into mul-

tiple instructions at Level 4. Most C++ debuggers, for example, have the option to view a win-

dow that lists the assembly language translation of your code. In Java, you would look at a

symbolic listing of Java byte code to see the same sort of translation. Level 5 programs are usu-

ally translated by compilers into Level 4 programs. They usually have a built-in assembler that

immediately translates the Level 4 code into conventional machine language.

1.2.1 The History of PC Assemblers

There is no universal assembly language specification for Intel processors. What has emerged

over the years is a de facto standard, established by Microsoft’s popular MASM Version 5

assembler. Borland International established itself as a major competitor in the early 1990s with

TASM (Turbo Assembler). TASM added many enhancements, producing what was called Ideal

Mode, and Borland also provided a MASM compatibility mode which matched the syntax of

MASM Version 5.

Microsoft released MASM 6.0 in 1992, which was a major upgrade with many new fea-

tures. Since that time, Microsoft has released minor upgrades in versions 6.11, 6.13, 6.14, and

6.15, to keep up with changes to each new Pentium instruction set. The assembler syntax has

not changed since version 6.0. Borland released 32-bit TASM 5.0 in 1996, which matches the

MASM 6.0 syntax.

There are other popular assemblers, all of which vary from MASM’s syntax to a greater or

lesser degree: To name a few, there are: NASM (Netwide Assembler) for both Windows and

Linux, MASM32, a shell built on top of MASM, Asm86, and GNU assembler, distributed by the

Free Software Foundation.

The Intel IA-32 processor architecture supports multiple virtual machines. Its virtual-86 oper-
ating mode emulates the architecture of the Intel 8086/8088 processor, used in the original
IBM Personal Computer. The Pentium can run multiple instances of the virtual-86 machine at
the same time, so that independent programs running on each virtual machine seem to have
complete control of their host computer.

1.3 Data Representation - DEMONSTRATION COPY 13

1.2.2 Section Review

1. In your own words, describe the virtual machine concept.

2. Why don’t programmers use the native language of a computer to write application pro-
grams?

3. (True/False): When an interpreted program written in language L1 runs, each of its instruc-
tions is decoded and executed by a program written in language L0.

4. Explain the technique of translation when dealing with languages at different virtual
machine levels.

5. How does the Intel IA-32 processor architecture demonstrate an example of a virtual
machine?

6. What software permits compiled Java programs to run on almost any computer?

7. Name the six virtual machine levels named in this section, from lowest to highest.

8. Why don’t programmers write applications in microcode?

9. Conventional machine language is used at which level of the virtual machine shown in
Figure 1–1?

10. Statements at the assembly language level of a virtual machine are translated into state-
ments at which other level(s)?

1.3 Data Representation

Before we can begin to discuss computer organization and assembly language, we need a com-
mon mode of communication with numbers. Specifically, computer data can be represented in a
variety of ways. Because we are dealing with the computer at the machine level, it is necessary
to examine the contents of memory and registers. Computers are constructed from digital cir-
cuits that have only two states: on and off. At times, we will use binary numbers to describe the
contents of computer memory; at other times, decimal and hexadecimal numbers will be used.
You must develop a certain fluency with number formats, and have the ability to translate num-
bers from one format to another.

Each numbering format, or system, has a base, or maximum number of symbols that can
be assigned to a single digit. Table 1–2 shows the possible digits for the numbering systems used
most commonly in computer literature. In the last row of the table, hexadecimal numbers use the
digits 0 through 9, and then continue with the letters A through F to represent decimal values 10

14 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

through 15. It’s quite common to use hexadecimal numbers when showing the contents of com-
puter memory and machine-level instructions.

1.3.1 Binary Numbers

A computer stores instructions and data in memory as collections of electronic charges. Repre-
senting these entities with numbers requires a system geared to the concepts of on and off or true
and false. Binary numbers are base 2 numbers in which each binary digit (called a bit) is either a
0 or a 1.

Bits are numbered starting at zero on the right side, and increasing toward the left. The bit
on the left is called the most significant bit (MSB), and the bit on the right is the least significant
bit (LSB). The MSB and LSB bit numbers of a 16-bit binary number are shown in the following
figure:

Binary integers can be either signed or unsigned. A signed integer can be either positive or
negative. An unsigned integer can only be positive, including zero. Through special encoding
schemes, binary numbers can even represent real numbers. For now, we begin with the simplest
type of binary numbers, unsigned integers.

1.3.1.1 Unsigned Binary Integers

Starting with the least significant bit, each bit in an unsigned binary integer represents an
increasing power of 2. The following figure contains an 8-bit binary number, showing how the
powers of two increase from right to left:

Table 1–2 Binary, Octal, Decimal, and Hexadecimal Digits

System Base Possible Digits

Binary 2 0 1

Octal 8 0 1 2 3 4 5 6 7

Decimal 10 0 1 2 3 4 5 6 7 8 9

Hexadecimal 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

015

1 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0

MSB LSB

1 1 1 1 1 1 1 1

27 26 25 24 23 22 21 20

1.3 Data Representation - DEMONSTRATION COPY 15

Table 1–3 lists the decimal values of 20 through 215.

1.3.1.2 Translating Unsigned Binary Integers to Decimal

Weighted positional notation represents a convenient way to calculate the decimal value of an
unsigned binary integer having n digits:

dec = (Dn-1 × 2n-1) + (Dn-2 × 2n-2) + ... + (D1 × 21) + (D0 × 20)

D indicates a binary digit. For example, binary 00001001 is equal to 9. We calculate this value
by leaving out terms equal to zero:

(1 × 23) + (1 × 20) = 9

This is also shown in the following figure:

(F009)

1.3.1.3 Translating Unsigned Decimal Integers to Binary

To translate an unsigned decimal integer into binary, repeatedly divide the decimal value by 2,
saving each remainder as a binary digit. Here is an example of how we would translate decimal
37. The remainder digits, starting from the top row, are the binary digits D0, D1, D2, D3, D4, and

Table 1–3 Binary Bit Position Values.

 2n Decimal Value 2n Decimal Value

20 1 28 256

21 2 29 512

22 4 210 1024

23 8 211 2048

24 16 212 4096

25 32 213 8192

26 64 214 16384

27 128 215 32768

9

8

+ 1

0 0 0 0 1 0 0 1

16 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

D5:

Collecting the binary digits in the remainder column in reverse order produces binary 100101.
Because we are used to working with binary numbers whose lengths are multiples of 8, we can
fill the remaining two digit positions on the left with zeros, producing 00100101.

1.3.2 Binary Addition

When adding two binary integers, you must proceed bit by bit, beginning with the lowest order
pair of bits (on the right side). Each bit pair is added. There are only four ways to add two binary
digits, as shown below:

In one case, when adding 1 to 1, the result is 10 binary. (You can also think of this as the decimal
value 2.) The extra digit generates a carry to the next-highest bit position. In the following fig-
ure, for example, we add binary 00000100 to 00000111:

Beginning with the lowest bit in each number (bit position 0), we add 0 + 1, producing a 1 in the

Division Quotient Remainder

37 / 2 18 1

18 / 2 9 0

9 / 2 4 1

4 / 2 2 0

2 / 2 1 0

1 / 2 0 1

0 + 0 = 0 0 + 1 = 1

1 + 0 = 1 1 + 1= 10

0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 0

+

0 0 0 0 1 0 1 1

1

(4)

(7)

(11)

carry:

01234bit position: 567

1.3 Data Representation - DEMONSTRATION COPY 17

bottom row. The same happens in the next highest bit (position 1). In bit position 2, we add 1 +
1, generating a sum of zero and a carry of 1. In bit position 3, we add the carry bit to 0 + 0, pro-
ducing 1. The rest of the bits are zeros. You can verify the addition by adding the decimal equiv-
alents shown on the right side of the figure (4 + 7 = 11).

1.3.3 Integer Storage Sizes

The basic storage unit for all data in an IA-32-based computer is a byte, containing 8 bits. Other
storage sizes are word (2 bytes), doubleword (4 bytes), and quadword (8 bytes). In the following
figure, the number of bits is shown for each size:

Table 1–4 shows the range possible values for each type of unsigned integer.

Large Measurements A number of large measurements are used when referring to both
memory and disk space:4

• One kilobyte is equal to 210, or 1,024 bytes.
• One megabyte (MB) is equal to 220, or 1,048,576 bytes.
• One gigabyte (GB) is equal to 230, or 10243, or 1,073,741,824 bytes.
• One terabyte (TB) is equal to 240, or 10244, or 1,099,511,627,776 bytes.
• One petabyte is equal to 250, or 1,125,899,906,842,624 bytes.
• One exabyte is equal to 260, or 1,152,921,504,606,846,976 bytes.
• One zettabyte is equal to 270.

• One yottabyte is equal to 280.

Table 1–4 Ranges of Unsigned Integers.

Storage Type Range (low–high) Powers of 2

Unsigned byte 0 to 255 0 to (28 − 1)

Unsigned word 0 to 65,535 0 to (216 − 1)

Unsigned doubleword 0 to 4,294,967,295 0 to (232 − 1)

Unsigned quadword 0 to 18,446,744,073,709,551,615 0 to (264 − 1)

4. Source: www.webopedia.com.

byte

16

8

32

word

doubleword

64quadword

18 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

1.3.4 Hexadecimal Integers

Large binary numbers are cumbersome to read, so hexadecimal digits are usually used by assem-
blers and debuggers to represent binary data. Each digit in a hexadecimal integer represents four
binary bits, and two hexadecimal digits together represent a byte.

A single hexadecimal digit can have a value from 0 to 15, so the letters A to F are used, as
well as the digits 0-9. The letter A = 10, B = 11, C = 12, D = 13, E = 14, and F = 15. Table 1–5
shows how each sequence of four binary bits translates into a decimal or hexadecimal value.

In the following example, we can see that the binary integer 000101101010011110010100
is represented by hexadecimal 16A794:

It is often useful to display binary integers with a space between each group of four bits. Trans-
lation from binary to hexadecimal becomes that much easier.

1.3.4.1 Converting Unsigned Hexadecimal to Decimal

In hexadecimal, each digit position represents a power of 16. This is helpful when calculating
the decimal value of a hexadecimal integer. First, let’s number the digits in a 4-digit hexadecimal
integer with subscripts as D3D2D1D0. The following formula calculates the number’s decimal
value:

dec = (D3 × 163) + (D2 × 162) + (D1 × 161) + (D0 × 160)

Table 1–5 Binary, Decimal, and Hexadecimal Equivalents.

Binary Decimal Hexadecimal Binary Decimal Hexadecimal

0000 0 0 1000 8 8

0001 1 1 1001 9 9

0010 2 2 1010 10 A

0011 3 3 1011 11 B

0100 4 4 1100 12 C

0101 5 5 1101 13 D

0110 6 6 1110 14 E

0111 7 7 1111 15 F

1 6 A 7 9 4

0001 0110 1010 0111 1001 0100

1.3 Data Representation - DEMONSTRATION COPY 19

This can be generalized for any n-digit hexadecimal number:

dec = (Dn-1 × 16n-1) + (Dn-2 × 16n-2) + . . . + (D1 × 161) + (D0 × 160)

For example, hexadecimal 1234 is equal to (1 × 163) + (2 × 162) + (3 × 161) + (4 × 160), or dec-
imal 4,660. Similarly, hexadecimal 3BA4 is equal to (3 × 163) + (11 * 162) + (10 × 161) + (4 ×
160), or decimal 15,268. The following figure shows this last calculation:

Table 1–6 lists the powers of 16, from 160 to 167.

1.3.4.2 Converting Unsigned Decimal to Hexadecimal

To convert an unsigned decimal integer to hexadecimal, repeatedly divide the decimal value by
16, and keep each remainder as a hexadecimal digit. For example, in the following table, we
convert decimal 422 to hexadecimal:

If we collect the digits from the remainder column in reverse order, the hexadecimal representa-
tion is 1A6. You may recall that we used the same algorithm for binary numbers back in

Table 1–6 Powers of 16, in Decimal.

16n Decimal Value 16n Decimal Value

160 1 164 65,536

161 16 165 1,048,576

162 256 166 16,777,216

163 4096 167 268,435,456

Division Quotient Remainder

422 / 16 26 6

26 / 16 1 A

1 / 16 0 1

3 * 163 = 12,288

11 * 162 = 2,816

10 * 161 = 160

4 * 160 = + 4

Total: 15,268 4AB3

20 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

Section 1.3.1.2. It works for any number base, just by changing the divisor.

1.3.5 Signed Integers

As we said earlier, signed binary integers can be either positive or negative. In general, the most
significant bit (MSB) indicates the number’s sign. A value of 0 indicates that the integer is posi-
tive, and 1 indicates that it is negative. For example, the following figure shows examples of both
negative and positive integers stored in a single byte:

1.3.5.1 Two’s Complement Notation

Negative integers are represented using what is called two’s complement representation. The
two’s complement of an integer is simply its additive inverse. (You may recall that when a num-
ber’s additive inverse is added to the number, their sum is zero.)

Two’s complement representation is useful to processor designers because it removes the
need for separate digital circuits to handle both addition and subtraction. For example, if pre-
sented with the expression A − B, the processor can simply convert it to an addition expression:
A + (−B):

The two’s complement of a binary integer is formed by reversing its bits and adding 1.
Using the 8-bit binary value 00000001, for example, its two’s complement turns out to be
11111111, as can be seen below.

Therefore, 11111111 is the two’s complement representation of −1. The two’s complement
operation is reversible, so if you form the two’s complement of 11111111, the result is
00000001.

Starting value 00000001

Step 1: reverse the bits 11111110

Step 2: add 1 to the value from Step 1 11111110
+00000001

Sum: two’s complement representation 11111111

1 1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

sign bit

Negative

Positive

1.3 Data Representation - DEMONSTRATION COPY 21

Two’s Complement of Hexadecimal To form the two’s complement of a hexadecimal inte-
ger, reverse all bits and add 1. An easy way to reverse the bits of a hexadecimal digit is to sub-
tract the digit from 15. Here are several examples of hexadecimal integers converted to their
two’s complements:

6A3D --> 95C2 + 1 --> 95C3
95C3 --> 6A3C + 1 --> 6A3D
21F0 --> DE0F + 1 --> DE10
DE10 --> 21EF + 1 --> 21F0

Converting Signed Binary to Decimal Suppose you would like to determine the decimal
value of a signed binary integer. Here are the steps to follow:

• If the highest bit is a 1, it is currently stored in two’s complement notation. You must form
its two’s complement a second time to get its positive equivalent. Then you can convert
this new number to decimal as if it were an unsigned binary integer.

• If the highest bit is a 0, you can convert it to decimal as if it were an unsigned binary inte-
ger.

For example, signed binary 11110000 has a 1 in the highest bit, indicating that it is a neg-
ative integer. First we form its two’s complement, then we convert the result to decimal. Here are
the steps in the process:

Remembering that the original integer (11110000) was negative, we infer that its decimal value
was −16.

Converting Signed Decimal to Binary Suppose you would like to determine the binary rep-
resentation of a signed decimal integer. Here are the steps to follow:

• Convert the absolute value of the decimal integer to binary.
• If the original decimal integer was negative, form the two’s complement of the binary

number from the previous step.

For example, −43 decimal can be translated to binary as follows:

• The binary representation of unsigned 43 is 00101011.

Starting value 11110000

Step 1: reverse the bits 00001111

Step 2: add 1 to the value from Step 1 00001111
+ 1

Step 3: form the two’s complement 00010000

Step 4: convert to decimal 16

22 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

• Because the original value was negative, we form the two’s complement of 00101011,
which is 11010101. This is the representation of −43 decimal

Converting Signed Decimal to Hexadecimal To convert a signed decimal integer to hexa-
decimal, do the following:

• Convert the absolute value of the decimal integer to hexadecimal.

• If the decimal integer was negative, form the two’s complement of the hexadecimal num-
ber from the previous step.

Converting Signed Hexadecimal to Decimal To convert a signed hexadecimal integer to
decimal, do the following:

• If the hexadecimal integer is negative, form its two’s complement; otherwise, retain the
integer as is.

• Using the integer from the previous step, convert it to decimal. If the original value was
negative, attach a minus sign to the beginning of the decimal integer.

1.3.5.2 Maximum and Minimum Values

A signed integer of n bits can only use n–1 bits to represent the number’s magnitude. Table 1–7
shows the minimum and maximum values for signed bytes, words, doublewords, and quad-
words.

1.3.6 Character Storage

Assuming that a computer can only store binary data, one might wonder how it could also store
characters. To do this, it must support a certain character set, which is a mapping of characters
to integers. Until a few years ago, character sets used only 8 bits. Because of the great diversity

You can tell if a hexadecimal integer is positive or negative by inspecting its most significant
(highest) digit. If the digit is >= 8, the number is negative; if the digit is <= 7, the number is
positive. For example, hexadecimal 8A20 is negative, and 7FD9 is positive.

Table 1–7 Storage Sizes and Ranges of Signed Integers.

Storage Type Range (low–high) Powers of 2

Signed byte –128 to +127 –27 to (27 – 1)

Signed word –32,768 to +32,767 –215 to (215 – 1)

Signed doubleword –2,147,483,648 to 2,147,483,647 –231 to (231 – 1)

Signed quadword –9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

–263 to (263 – 1)

1.3 Data Representation - DEMONSTRATION COPY 23

of languages around the world, the 16-bit Unicode character set was created to support thou-
sands of different character symbols. 5

When running in character mode (such as MS-DOS), IBM-compatible microcomputers
use the ASCII (pronounced “askey”) character set. ASCII is an acronym for American Standard
Code for Information Interchange. In ASCII, a unique 7-bit integer is assigned to each character.

Because ASCII codes use only the lower 7 bits of every byte, the extra bit is used on vari-
ous computers to create a proprietary character set. On IBM-compatible microcomputers, for
example, values 128–255 represent graphics symbols and Greek characters.

ASCII Strings A sequence of one or more characters is called a string. An ASCII string is
stored in memory as a succession of bytes containing ASCII codes. For example, the numeric
codes for the string “ABC123” are 41h, 42h, 43h, 31h, 32h, and 33h. A null-terminated string is
a string of characters followed by a single byte containing zero. The C and C++ languages use
null-terminated strings, and many of the MS-DOS and MS-Windows functions require strings to
be in this format.

Using the ASCII Table There is a convenient table on the inside back cover of this book that
lists all of the ASCII codes when running in MS-DOS mode. To find the hexadecimal ASCII
code of a character, look along the top row of the table and find the column containing the char-
acter that you want to translate. The most significant digit of the hexadecimal value is in the sec-
ond row at the top of the table; the least significant digit is in the second column from the left.
For example, to find the ASCII code of the letter a, find the column containing the a, and look in
the second row: The first hexadecimal digit is 6. Next look to the left along the row containing a
and note that the second column contains the digit 1. Therefore, the ASCII code of a is 61 hexa-
decimal. This is shown below in simplified form:

MS-Windows programs use a variety of different character sets, so it is not possible to use
just a single lookup table. (You can read the Microsoft documentation on Windows fonts to see
how characters translate into numeric codes.)

Terminology for Numeric Data Representation It is important to use precise terminology
when describing the way numbers and characters are represented in memory and on the display
screen. Let’s use decimal 65 as an example: stored in memory as a single byte, its binary bit pat-

5. You can read about the Unicode Standard at http:// www.unicode.org.

a

6

1

24 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

tern is 01000001. A debugging program would probably display the byte as “41,” which is the
hexadecimal notation for this bit pattern. But if the byte were moved to the video display area of
memory by a running program, the letter A would appear onscreen. This is because 01000001 is
the ASCII code for the letter A. In other words, the interpretation of numbers on a computer
depends greatly on the context in which the number appears.

In this book, we use a naming method for numeric data representation that is reasonably
general to avoid conflicts with terminology you might encounter from other sources.

• A binary number is a number stored in memory in its raw format, ready to be used in a cal-
culation. Binary integers are stored in multiples of 8 bits (8, 16, 32, 48, or 64).

• An ASCII digit string is a string of ASCII characters, such as “123” or “65,” which is
made to look like a number. This is simply a representation of the number and can be in
any of the formats shown for the decimal number 65 in Table 1–8:

1.3.7 Section Review

1. Explain the term LSB.

2. Explain the term MSB.

3. What is the decimal representation of each of the following unsigned binary integers?

a. 11111000
b. 11001010
c. 11110000

4. What is the decimal representation of each of the following unsigned binary integers?

a. 00110101
b. 10010110
c. 11001100

5. What is the sum of each pair of binary integers?

a. 00001111 + 00000010
b. 11010101 + 01101011

Table 1–8 Types of Numeric Strings.

Format Value

ASCII binary "01000001"

ASCII decimal "65"

ASCII hexadecimal "41"

ASCII octal "101"

1.3 Data Representation - DEMONSTRATION COPY 25

c. 00001111 + 00001111

6. What is the sum of each pair of binary integers?

a. 10101111 + 11011011
b. 10010111 + 11111111
c. 01110101 + 10101100

7. How many bytes are in each of the following data types?

a. word
b. doubleword
c. quadword

8. How many bits are in each of the following data types?

a. word
b. doubleword
c. quadword

9. What is the minimum number of binary bits needed to represent each of the following
unsigned decimal integers?

a. 65
b. 256
c. 32768

10. What is the minimum number of binary bits needed to represent each of the following
unsigned decimal integers?

a. 4095
b. 65534
c. 2134657

11. What is the hexadecimal representation of each of the following binary numbers?

a. 1100 1111 0101 0111
b. 0101 1100 1010 1101
c. 1001 0011 1110 1011

12. What is the hexadecimal representation of each of the following binary numbers?

a. 0011 0101 1101 1010
b. 1100 1110 1010 0011
c. 1111 1110 1101 1011

13. What is the binary representation of the following hexadecimal numbers?

a. E5B6AED7
b. B697C7A1
c. 234B6D92

14. What is the binary representation of the following hexadecimal numbers?

26 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

a. 0126F9D4
b. 6ACDFA95
c. F69BDC2A

15. What is the unsigned decimal representation of each hexadecimal integer?

a. 3A
b. 1BF
c. 4096

16. What is the unsigned decimal representation of each hexadecimal integer?

a. 62
b. 1C9
c. 6A5B

17. What is the 16-bit hexadecimal representation of each signed decimal integer?

a. -26
b. -452

18. What is the 16-bit hexadecimal representation of each signed decimal integer?

a. -32
b. -62

19. The following 16-bit hexadecimal numbers represent signed integers. Convert to decimal.

a. 7CAB
b. C123

20. The following 16-bit hexadecimal numbers represent signed integers. Convert to decimal.

a. 7F9B
b. 8230

21. What is the decimal representation of the following signed binary numbers?

a. 10110101
b. 00101010
c. 11110000

22. What is the decimal representation of the following signed binary numbers?

a. 10000000
b. 11001100
c. 10110111

23. What is the 8-bit binary (two’s complement) representation of each of the following signed
decimal integers?

a. −5
b. -36
c. -16

1.4 Boolean Operations - DEMONSTRATION COPY 27

24. What is the 8-bit binary (two’s complement) representation of each of the following signed
decimal integers?

a. -72

b. -98

c. -26

25. What are the hexadecimal and decimal representations of the ASCII character capital X?

26. What are the hexadecimal and decimal representations of the ASCII character capital M?

27. Why was Unicode invented?

28. Challenge: What is the largest value you can represent using a 256-bit unsigned integer?

29. Challenge: What is the largest positive value you can represent using a 256-bit signed inte-
ger?

1.4 Boolean Operations

In this section we introduce a few fundamental operations of boolean algebra, the algebra that
defines a set of operations on the values true and false. This algebra was invented by George
Boole, a mid-nineteenth-century mathematician who never saw a working computer. When early
computers were designed, it was discovered that his algebra could be used to describe the design
of digital circuits. At the same time, boolean expressions are used in programming to express
logical operations.

Boolean Expression A boolean expression involves a boolean operator and one or more
operands. Each boolean expression implies a value of true or false. The set of operators includes:

• NOT: notated as ¬ or ~ or ‘

• AND: notated as ∧ or •

• OR: notated as ∨ or +

The NOT operator is unary, and the other operators are binary. The operands of a boolean
expression can also be boolean expressions. The following are examples:

Expression Description

¬ X NOT X

X ∧ Y X AND Y

X ∨ Y X OR Y

¬ X ∨ Y (NOT X) OR Y

28 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

NOT The NOT operation reverses a boolean value. It can be written in mathematical notation
as ¬ X, where X is a variable (or expression) holding a value of true (T) or false (F). The follow-
ing truth table shows all the possible outcomes of NOT using a variable X. Inputs are on the left
side, and outputs (shaded) are on the right side:

A truth table can just as easily be constructed using 0 for false and 1 for true.

AND The Boolean AND operation requires two operands, and can be expressed using the
notation X ∧ Y. The following truth table shows all the possible outcomes (shaded) for the val-
ues of X and Y:

Note that the output is true only when both inputs are true. This corresponds to the logical AND
used in compound boolean expressions in programming languages such as C++ and Java.

OR The Boolean OR operation requires two operands, and can be expressed using the nota-
tion X ∨ Y. The following truth table shows all the possible outcomes (shaded) for the values of
X and Y:

¬ (X ∧ Y) NOT (X AND Y)

X ∧ ¬ Y X AND (NOT Y)

X ¬ X

F T

T F

X Y X ∧ Y

F F F

F T F

T F F

T T T

X Y X ∨ Y

F F F

F T T

Expression Description

1.4 Boolean Operations - DEMONSTRATION COPY 29

Note that the output is false only when both inputs are false. This corresponds to the logical OR
used in compound boolean expressions in programming languages such as C++ and Java.

Operator Precedence In a boolean expression involving more than one operator, the issue of
precedence is important. As shown in the following table, the NOT operator has the highest pre-
cedence, followed by AND and OR. To avoid any ambiguity, use parentheses to force the initial
evaluation of an expression:

1.4.1 Truth Tables for Boolean Functions

A boolean function receives boolean inputs and produces a boolean output. A truth table can be
constructed for any boolean function that shows all possible inputs and outputs. The following
are truth tables representing boolean functions having two inputs named X and Y. The shaded
column on the right side is the function’s output:

Example 1: ¬ X ∨ Y

T F T

T T T

Expression Order of Operations

¬ X ∨ Y NOT, then OR

¬ (X ∨ Y) OR, then NOT

X ∨ (Y ∧ Z) AND, then OR

X ¬ X Y ¬ X ∨ Y

F T F T

F T T T

T F F F

T F T T

X Y X ∨ Y

30 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

Example 2: X ∧ ¬ Y

Example 3: (Y ∧ S) ∨ (X ∧ ¬ S)

This boolean function describes a multiplexer, a digital component that uses a selector bit (S) to
select one of two outputs (X or Y). If S = false, the function output (Z) is the same as X. If S =
true, the function outputs is the same as Y. Here is a diagram of such a device:

X Y ¬ Y X ∧ ¬ Y

F F T F

F T F F

T F T T

T T F F

X Y S Y ∧ S ¬ S X ∧ ¬ S (Y ∧ S) ∨ (X ∧ ¬ S)

F F F F T F F

F T F F T F F

T F F F T T T

T T F F T T T

F F T F F F F

F T T T F F T

T F T F F F F

T T T T F F T

mux
X

Y

S

Z

1.5 Chapter Summary - DEMONSTRATION COPY 31

1.4.2 Section Review

1.5 Chapter Summary

This book, entitled Assembly Language for Intel-Based Computers, focuses on programming
Intel microprocessors, specifically members of the Intel IA-32 processor family.

This book will give you some basic principles about computer architecture, machine lan-
guage, and low-level programming. You will learn enough assembly language to test your
knowledge on today's most widely used microprocessor family.

Before reading this book, you should have completed a single college course or its equiva-
lent in computer programming.

An assembler is a program that converts source-code programs from assembly language
into machine language. A companion program, called a linker, combines individual files created
by an assembler into a single executable program. A third program, called a debugger, provides
a way for a programmer to trace the execution of a program and examine the contents of mem-
ory.

You will create two basic types of programs: 16-Bit Real-address mode programs, and 32-
bit Protected mode programs.

You will learn the following concepts from this book: Basic computer architecture applied
to Intel IA-32 processors; elementary boolean logic; how IA-32 processors manage memory;
how high-level language compilers translate statements from their language into assembly lan-
guage and native machine code; how high-level languages implement arithmetic expressions,

1. Describe the following boolean expression: ¬ X ∨ Y.

2. Describe the following boolean expression: (X ∧ Y).

3. What is the value of the boolean expression (T ∧ F) ∨ T ?

4. What is the value of the boolean expression ¬(F ∨ T) ?

5. What is the value of the boolean expression ¬ F ∨ ¬ ?

6. Create a truth table to show all possible inputs and outputs for the boolean function
described by ¬ (A ∨ Β).

7. Create a truth table to show all possible inputs and outputs for the boolean function
described by (¬ A ∧ ¬ B).

8. Challenge: If a boolean function has four inputs, how many rows would be required for
its truth table?

9. Challenge: How many selector bits would be required for a four-input multiplexer?

32 - DEMONSTRATION COPY Chapter 1 • Basic Concepts

loops, and logical structures at the machine level; the data representation of signed and unsigned
integers, real numbers, and character data.

Assembly language has a one-to-one relationship with machine language, meaning that
one assembly language instruction corresponds to one machine-language instruction. Assembly
language is not portable, because it is tied to a specific processor family.

It is important to understand how languages are simply tools that can be applied to various
types of applications. Some applications, such as device drivers and hardware interface routines,
are more suited to assembly language. Other applications, such as multi-platform business appli-
cations, are suited to high-level languages.

The virtual machine concept is an effective way of showing how each layer in a computer
architecture represents an abstraction of a machine. Layers can be constructed of hardware or
software, and programs written at any layer can be translated or interpreted by the next-lowest
layer. The virtual machine concept can be related to real-world computer layers, including digi-
tal logic, microarchitecture, instruction set architecture, operating system, assembly language,
and high-level languages.

Binary and hexadecimal numbers are essential notational tools for programmers working
at the machine level. For this reason, it is vital that you understand how to mainpulate and trans-
late between each of the number systems. It is also important to understand how character repre-
sentations are created by computers.

The following boolean operators were presented in this chapter: NOT, AND, and OR. A
boolean expression combines a boolean operator with one or more operands. A truth table is an
effective way to show all possible inputs and outputs of a boolean function.

	Basic Concepts
	1.1 Welcome to Assembly Language
	1.1.1 Some Good Questions to Ask
	1.1.2 Assembly Language Applications
	Table�1–1� Comparison of Assembly Language to High-Level Languages.

	1.1.3 Section Review

	1.2 Virtual Machine Concept
	Figure�1–1� Virtual Machine Levels 0 through 5.
	1.2.1 The History of PC Assemblers
	1.2.2 Section Review

	1.3 Data Representation
	Table�1–2� Binary, Octal, Decimal, and Hexadecimal Digits
	1.3.1 Binary Numbers
	1.3.1.1 Unsigned Binary Integers
	Table�1–3� Binary Bit Position Values.

	1.3.1.2 Translating Unsigned Binary Integers to Decimal
	1.3.1.3 Translating Unsigned Decimal Integers to Binary

	1.3.2 Binary Addition
	1.3.3 Integer Storage Sizes
	Table�1–4� Ranges of Unsigned Integers.

	1.3.4 Hexadecimal Integers
	Table�1–5� Binary, Decimal, and Hexadecimal Equivalents.
	1.3.4.1 Converting Unsigned Hexadecimal to Decimal
	Table�1–6� Powers of 16, in Decimal.

	1.3.4.2 Converting Unsigned Decimal to Hexadecimal

	1.3.5 Signed Integers
	1.3.5.1 Two’s Complement Notation
	1.3.5.2 Maximum and Minimum Values
	Table�1–7� Storage Sizes and Ranges of Signed Integers.

	1.3.6 Character Storage
	Table�1–8� Types of Numeric Strings.

	1.3.7 Section Review

	1.4 Boolean Operations
	1.4.1 Truth Tables for Boolean Functions
	1.4.2 Section Review

	1.5 Chapter Summary

