0 1 0 1 + 0 + 0 + 1 + 1 --- --- --- --- 0 1 1 10 ^ | +--- carry
In decimal In binary *** * = indicate that previous 5 00000101 bit addition produced a carry + 7 + 00000111 ---- ---------- 12 00001100
In decimal In binary ** * * = indicate that previous bit addition 145 10010001 produced a carry + 61 + 00111101 ------- ---------- 206 11001110
0 1 0 1 - 0 - 0 - 1 - 1 --- --- --- --- 0 1 *1 0 ^ | +--- BORROW !
In decimal In binary * * = indicate that previous 9 00001001 bit subtraction produced - 5 - 00000101 a borrow ---- ---------- 4 00000100
In decimal In binary ** * * = indicate that previous bit subtraction 149 10010101 produced a borrow - 41 - 00101001 ----- ---------- 108 01101100
0 1 0 1 x 0 x 0 x 1 x 1 --- --- --- --- 0 0 0 1
5 00000101 x 3 x 00000011 ---- ----------- 15 00000101 00000101* ----------- 00001111 = 15
10010101 (= 149 dec) x 00101001 (= 41 dec) ---------- 10010101 00000000* 00000000** 10010101*** 00000000**** 10010101***** 00000000****** 00000000******* ---------------- 001011111011101 (= 6109 = 149*41)
In decimal: In binary: 03 (quotient) 00000011 (quotient) ------- ------------------ 3 / 10 11 / 00001010 9 11 ---- --- 1 (remainder) 100 11 --- 1 (remainder)
In decimal: 0082 (quotient = 82(10)) --------- 27 / 2237 0 --- 22 0 --- 223 216 ---- 77 54 --- 23 (remainder = 23(10)) In binary: 27(10) = 11011(2) 2237(10) = 100010111101(2) 000001010010 (quotient = 82(10)) ------------------- 11011/ 100010111101 0 --- 10 00 --- 100 000 ---- 1000 0000 ----- 10001 00000 ------ 100010 11011 ------- 1111 0000 ------- 11111 11011 ------- 1001 0000 ------ 10011 00000 ------ 100110 11011 ------- 10111 00000 ------ 10111 (remainder = 23(10))