Property of any positional number system:
|
I will illustrate this fact by performing some addition and multiplication in the base 5 number system
The Base 5 positional number system:
|
Example of a Base-5 number:
What decimal value is represented by: 243(5) ? Answer: 243(5) = 2 x 52 + 4 x 51 + 3 x 50 = 50 + 20 + 3 = 73(10) |
Addition table for the Base-5 number system:
+ | 1 | 2 | 3 | 4 ----+----+----+----+---- 1 | 2 | 3 | 4 | 10 ----+----+----+----+---- 2 | 3 | 4 | 10 | 11 ----+----+----+----+---- 3 | 4 | 10 | 11 | 12 ----+----+----+----+---- 4 | 10 | 11 | 12 | 13 |
Adding Base-5 numbers works exactly like adding decimal numbers
The only difference is:
The carry happens when the total (sum) ≥ 5
Example:
Base-5 Decimal equivalent 324 89 + 243 + 73 ------- ------ 1122 162 |
(I will do the addition step-by-step in class)
Multiplication table for the Base-5 number system:
x | 1 | 2 | 3 | 4 ----+----+----+----+---- 1 | 1 | 2 | 3 | 4 ----+----+----+----+---- 2 | 2 | 4 | 11 | 13 ----+----+----+----+---- 3 | 3 | 11 | 14 | 22 ----+----+----+----+---- 4 | 4 | 13 | 22 | 31 |
Multiplying Base-5 numbers works exactly like adding decimal numbers
The only difference is:
The carry happens when the total (sum) ≥ 5
Example:
Base-5 Decimal equivalent 324 89 x 243 x 73 ------- ------ 2032 267 24110 6230 120300 ------- -------- 6497 201442 202042(5) = 2*55 + 0*54 + 1*53 + 4*52 + 4*51 + 2*50 = 2*3125 + 0 + 1*125 + 4*25 + 4*5 + 2 = 6250 + 125 + 100 + 20 + 2 = 6497(10) |
(I will do the addition step-by-step in class)