Multiway Search Trees

Intuitive Definition

A multiway search tree is one with nodes that haxaeor morechildren. Within each
node is stored a given key, which is associatexthtilem we wish to access through the
structure.

Given this definition, a binary search tree is dtiway search tree.

More Formal Definition

Let T be a multiway search tree, th€mas the following properties:

T is ordered, meaning that the all the elementsilrirees to the left of an item are
less than the item itself, and all the elementsuintrees to the right of an item are
greater.

Each internal node df has at least 2 children.

Eachd-node (node withd children)v of T, with childrenv,... vy storesd-1 items

(Kg, X1),...,Ka-1, X¢-1). Where thek's are keys ang is the element associated with
key numbei.

External nodes are empty

A nmultiway search tree wwth a successful search path for the
nunber 6 (in green), and an unsuccessful search path for the

nunmber 26 (in red)

Definition of a (2,4)-tree

A (2,4)-tree is simply a multiway search tree (efriedabovg that also satisfies the
following properties:

I. Sl ZE: every node can have morethan 4 children.
II. DEPTH: all external nodes have the same depth.

Assuming that we are able to maintain these prigsefivhich still remains to be seen!),
then we can deduce a couple of useful propertiéisi®ftructure:

1. if follows from the theSI ZE property that the number of items at each node is
less than or equal to 4. Herdig,, is constant and our search time is already down
to O()!

2. luckily, the DEPTH property ensures that the tree is balanced, batthht the
height is restricted to THETA(lag (wheren is the number of nodes in the tree).
Click here if you want to see the proof

Observations 1 and 2 imply that the worst casechdane in a (2,4)-tree is O(loy
under the assumption that we can efficiently mainten properties | and II.

So we've got to see if we can insert and deletesitieom this tree efficiently without
disturbing these properties. This will be the tapiithe next two sections.

[Top] [Bottorm] [Homd

6.7 Insertion
In this section we will show that:

- TheSI ZE andDEPTH depth properties of (2,4)-trees can be maintainpexh
insertion of a new item.
- The maintenance cost is bounded above by the heighé tree

6.7.1 The insertion algorithm

Let's begin with a basic algorithm for insertiordamork from there. We would like to
| NSERT a keyk into a (2,4)-tred. Here are the steps we follow:

1. perform aSEARCHforkin T.
if it succeeds then we don't need NSERT the item and we're done,
otherwise (if it fails) then the search terminates at areexdl nodez.

2. letv be the parent node afinsertk into the appropriate place wand add a new
childwtov on the left oz (seef i gure 6. 2(a)).

And that's IT (well...essentially)! Since the prduee did not change the depthTgfthe
tree is balanced and we have in no way violatedBTH property, but what about the

S| ZE property?
(a)

TR AR

N 2 e O I A 1

Figure 6.2: insertion of new key k resulting in new node w
(inred) (a) with no overflow, (b) with an overfl ow at node
%

(b)

Consider what would happenvfalready had 4 children before we inseitedto it (see
figure 6.2(b)). After insertionv would now be a 5-node thereby violationg the size
property ofT! This is called amverflow at nodev, and it must be resolved in order for
our algorithm to be valid for (2,4)-trees.

We fix this little glitch bySPLI TTI NGV into two smaller nodes as followfsi(qur e
6. 3): Letw,...vs5 be the children of (which stores keyk,... ki),

1. Splitv by replacing it with/' (a 3-node that stores kelgsandk,) andv” (a 2-node
that storeky).

2. Storeksz in whatwasthe parent o¥ (if v was the root we create a new node and
store it in there). Call that node

3. makev' andv" the children ofu. (if v was thé™ child ofu, thenv' andv" become
thei™ and(i+1)* children ofu).

Figure 6.3: local state of T after the node v has been split
into v’ and v".

First observe that this procedure has perfectlgriatare of the overflow situation at node
v, but has potentiallgreatedan overflow at node (sinceu now has had one child added
to it)! In this case we would simply repeat ®RLI TTI NG procedure at node

Notice also that this procedure will eventuallynérate at a node that doesn't overflow
or at the root (where we create a brand new naateotbviously doesn't overflow).

Finally, you may have spotted the fact that thech@nge the depth of the tree when we
create a new root. However this doesn't violateDiRTH property since every node in
the tree's depth increases by 1 (hence the trge Istdanced).

6.7.2 Analysis of insertion

+ We began with a search procedure which take @Qjloge.

« Next we insert the key intoin O(1) time.

« Finally, we had a maximum of @) split operations to maintain tis ZE
property. As weshowed in section 6,6 is THETA(logn). Hence we have at
worst case O(lag splits.

- Each split affects a constant number of itemsdorastant number of nodes Df
and hence takes O(1) time.

Therefore, insertion can be performed in (2,4)gi@eO(loq) time (wheren is the
number of nodes in the tree).

[Top] [Bottom] [Homd

6.8 Deletion

In the previous section, we saw that 8ieZE andDEPTH properties of (2,4)-trees can be
maintained efficiently as new items are insertéd the tree. We now show that the same
result holds as items are removed.

6.8.1 The deletion algorithm

Once again we'll begin with a basic algorithm thatll adjust. We want tBELETE a
keyk from T. For now, we shall assume tlkas stored in a nodewhose children arall
external nodesHere are the steps we follow:

1. perform aSEARCHforkin T,
if it fails then we don't need toDELETE the item so we exit,
otherwise (if it succeds) then we findk in a nodev with only external children
(by our assumption).

2. now we simply removek from v and delete the external node child to the left
of k (seefiqure 6.4(a)).

Simple enough. Since we only deleted external nodege didn't change the depth of
T, so that property is safe. However, we may haveolated theSI ZE property once
again.

(a) (b)

Figure 6.4: deletion of key k resulting in (a)two children
remaining in v so no underflow, (b) underflow at node v
because it is left with only one child

This is because (as shown ihi gure 6. 4(b)) v may have only had two children
before we removed. In such a case, it will be left as a 1-node, wiiwiolates the
definition of a multiway search tree (sesection 6.2.2. This situation is called an
underflow at nodev. Again, we're going to have to resolve this in ol to validate
our deletion algorithm.

Let u be the parent ofv. To solve this problem, we consider two seperatases:

I. vhas a siblingw that is a 3-node or a 4-node.
In this case we perform alRANSFER operation as follows {i gure 6. 5):
a. Move a child ofwtov.
b. Move a key fromw to u.
c. Move akey fromu tov.

This may seem a little cryptic, but one look at théigure should make this
quite clear. As you can see, this operation has tliellowing effects:

» It adds a child tov and removes one fronw (thereby makingv a 2-
node andw a 2 or 3-node, resolving the underflow a¥).

« But now we must transfer the corresponding keys witout destroying
the ordered nature of the tree. We do this by pushg the extra key
from w through the appropriate key in the parentu, and finally into v.

« The net effect is that the number of keys inv has been reduced by 1,
and the number of keys inv has been increased by 1 as desired!

Figure 6.5: deletion of key 4 resulting in an underfl ow
at v. (a) transfer operation, (b) the resulting tree
after the transfer.

v has no such siblings (i.e., they are all 2-nodes).
This case requires &USI ON of two nodes as followsf(i gure 6. 6):
Merge v with a 2-node siblingw creating a new nodey'.
a. Move a key fromu (V's parent) tov'.

After step (a),Vv' has 3 children, but stores only one key, and has lost a child
(since two of it's children merged into one), hencere move a key fromu to v'

to preserve the tree.

Note that the FUSI ON operation reduces the number oti's children by 1, potentially
causing an underflow atu. In such a case we would remedy this with another

FUSI ON or TRANSFER.

Observe also that this process also terminates dte root (an underflow at the root
simply causes its deletion), and is hence boundedave by O(log) as was the
SPLI T operation in thel NSERTI ON algorithm.

(a)

(b)

Figure 6.6: deletion of key 11 resulting in an underfl ow at
v. (a) fusion of v and w, (b) the resulting tree after the
f usi on.

Almost done! However, remember that everything abo only applies if the key
we're trying to remove is stored at a node with oyl external nodes for children (if
you don't remember making this assumption clickhere)! What do we do if this is
not the case? Well, there just so happens to be ary easy way to swap any key in a
(2,4)-tree with one that is stored in a node withhte property we desire without
destroying the ordering in the tree. This is done safollows:

Swap the internal keyk; with the largest element in the subtree immediatglto its
left. By the definition of a search tree, this keys the next smallest key in the tree
next to ki. So once we deletlk, the tree will be correctly ordered.

A natural question to ask would be "how do we findhis element?" This is
accomplished by performing the following steps:

1. Let v be the internal node in which the element we wisto delete k) is
stored.

2. Let w be the right-most internal node in the subtree roted at thei™ child of
V.

3. Swapk; with the last item ofw.

Once this is done, the item we wish to delete wile at a node that has only external
nodes for children, and we will be able to use thebove procedure to delete it.

6.8.2 Analysis of deletion

+ We began with a search procedure which takes O(log time.

- This may be followed with a swap which also takes (@gn).

« Finally, we had a maximum total of O(logn) TRANSFER or FUSI ON
operations (each of which takes constant time).

Therefore, deletion can also be accomplished in &;trees in O(log) time.

