
Multiway Search Trees 

Intuitive Definition 

A multiway search tree is one with nodes that have two or more children. Within each 
node is stored a given key, which is associated to an item we wish to access through the 
structure. 
Given this definition, a binary search tree is a multiway search tree.  

More Formal Definition 

Let T be a multiway search tree, then T has the following properties:  

• T is ordered, meaning that the all the elements in subtrees to the left of an item are 
less than the item itself, and all the elements in subtrees to the right of an item are 
greater. 

• Each internal node of T has at least 2 children. 
• Each d-node (node with d children) v of T, with children v1,...,vd stores d-1 items 

(k1, x1),...,(kd-1, xd-1). Where the ki's are keys and xi is the element associated with 
key number i. 

• External nodes are empty 

 
A multiway search tree with a successful search path for the 
number 6 (in green), and an unsuccessful search path for the 

number 26 (in red)  
 
 
 
 



Definition of a (2,4)-tree 

A (2,4)-tree is simply a multiway search tree (as defined above) that also satisfies the 
following properties:  

I. SIZE: every node can have no more than 4 children. 
II.  DEPTH: all external nodes have the same depth. 

Assuming that we are able to maintain these properties (which still remains to be seen!), 
then we can deduce a couple of useful properties of this structure:  

1. if follows from the the SIZE property that the number of items at each node is 
less than or equal to 4. Hence dmax is constant and our search time is already down 
to O(h)! 

2. luckily, the DEPTH property ensures that the tree is balanced, but also that the 
height is restricted to THETA(logn) (where n is the number of nodes in the tree). 
Click here if you want to see the proof 

Observations 1 and 2 imply that the worst case search time in a (2,4)-tree is O(logn) 
under the assumption that we can efficiently maintain properties I and II . 
 
So we've got to see if we can insert and delete items from this tree efficiently without 
disturbing these properties. This will be the topic of the next two sections.  
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6.7 Insertion 

In this section we will show that:  

• The SIZE and DEPTH depth properties of (2,4)-trees can be maintained upon 
insertion of a new item. 

• The maintenance cost is bounded above by the height of the tree  

6.7.1 The insertion algorithm 

Let's begin with a basic algorithm for insertion and work from there. We would like to 
INSERT a key k into a (2,4)-tree T. Here are the steps we follow:  

1. perform a SEARCH for k in T. 
if  it succeeds then we don't need to INSERT the item and we're done, 
otherwise (if it fails) then the search terminates at an external node z. 

2. let v be the parent node of z, insert k into the appropriate place in v and add a new 
child w to v on the left of z (see figure 6.2(a)). 



And that's IT (well...essentially)! Since the procedure did not change the depth of T, the 
tree is balanced and we have in no way violated the DEPTH property, but what about the 
SIZE property?  

 
Figure 6.2: insertion of new key k resulting in new node w 
(in red) (a) with no overflow, (b) with an overflow at node 

v  
 
Consider what would happen if v already had 4 children before we inserted k into it (see 
figure 6.2(b)). After insertion v would now be a 5-node thereby violationg the size 
property of T! This is called an overflow at node v, and it must be resolved in order for 
our algorithm to be valid for (2,4)-trees. 
 
We fix this little glitch by SPLITTING v into two smaller nodes as follows (figure 
6.3): Let v1,...,v5 be the children of v (which stores keys k1,...,k4),  

1. Split v by replacing it with v' (a 3-node that stores keys k1 and k2) and v" (a 2-node 
that stores k4). 

2. Store k3 in what was the parent of v (if v was the root we create a new node and 
store it in there). Call that node u. 

3. make v' and v" the children of u. (if v was the i th child of u, then v' and v" become 
the i th and (i+1)st children of u).  



 
Figure 6.3: local state of T after the node v has been split 

into v'  and v" .  
 
First observe that this procedure has perfectly taken care of the overflow situation at node 
v, but has potentially created an overflow at node u (since u now has had one child added 
to it)! In this case we would simply repeat the SPLITTING procedure at node u. 
 
Notice also that this procedure will eventually terminate at a node that doesn't overflow 
or at the root (where we create a brand new node that obviously doesn't overflow). 
 
Finally, you may have spotted the fact that the we change the depth of the tree when we 
create a new root. However this doesn't violate our DEPTH property since every node in 
the tree's depth increases by 1 (hence the tree stays balanced).  

6.7.2 Analysis of insertion 

• We began with a search procedure which take O(logn) time.  
• Next we insert the key into v in O(1) time.  
• Finally, we had a maximum of O(h) split operations to maintain the SIZE 

property. As we showed in section 6.6, h is THETA(logn). Hence we have at 
worst case O(logn) splits. 

• Each split affects a constant number of items in a constant number of nodes of T 
and hence takes O(1) time.  

Therefore, insertion can be performed in (2,4)-trees in O(logn) time (where n is the 
number of nodes in the tree).  
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6.8 Deletion 



In the previous section, we saw that the SIZE and DEPTH properties of (2,4)-trees can be 
maintained efficiently as new items are inserted into the tree. We now show that the same 
result holds as items are removed.  

6.8.1 The deletion algorithm 

Once again we'll begin with a basic algorithm that we'll adjust. We want to DELETE a 
key k from T. For now, we shall assume that k is stored in a node v whose children are all 
external nodes. Here are the steps we follow:  

1. perform a SEARCH for k in T, 
if it fails then we don't need to DELETE the item so we exit, 
otherwise (if it succeds) then we find k in a node v with only external children 
(by our assumption). 

2. now we simply remove k from v and delete the external node child to the left 
of k (see figure 6.4(a)).  

Simple enough. Since we only deleted external nodes, we didn't change the depth of 
T, so that property is safe. However, we may have violated the SIZE property once 
again.  

 
Figure 6.4: deletion of key k resulting in (a)two children 
remaining in v so no underflow, (b) underflow at node v 

because it is left with only one child  
 
This is because (as shown in figure 6.4(b)) v may have only had two children 
before we removed k. In such a case, it will be left as a 1-node, which violates the 
definition of a multiway search tree (see section 6.2.2). This situation is called an 
underflow at node v. Again, we're going to have to resolve this in order to validate 
our deletion algorithm. 
 
Let u be the parent of v. To solve this problem, we consider two seperate cases:  

I. v has a sibling w that is a 3-node or a 4-node.  
In this case we perform a TRANSFER operation as follows (figure 6.5):  

a. Move a child of w to v. 
b. Move a key from w to u. 
c. Move a key from u to v. 

This may seem a little cryptic, but one look at the figure should make this 
quite clear. As you can see, this operation has the following effects:  



• It adds a child to v and removes one from w (thereby making v a 2-
node and w a 2 or 3-node, resolving the underflow at v). 

• But now we must transfer the corresponding keys without destroying 
the ordered nature of the tree. We do this by pushing the extra key 
from w through the appropriate key in the parent u, and finally into v.  

• The net effect is that the number of keys in w has been reduced by 1, 
and the number of keys in v has been increased by 1 as desired! 

 

Figure 6.5: deletion of key 4 resulting in an underflow 
at v. (a) transfer operation, (b) the resulting tree 

after the transfer.  

 

II.  v has no such siblings (i.e., they are all 2-nodes).  
This case requires a FUSION of two nodes as follows (figure 6.6):  

 . Merge v with a 2-node sibling w creating a new node v'. 
a. Move a key from u (v's parent) to v'. 

After step (a), v' has 3 children, but stores only one key, and u has lost a child 
(since two of it's children merged into one), hence we move a key from u to v' 
to preserve the tree.  

Note that the FUSION operation reduces the number of u's children by 1, potentially 
causing an underflow at u. In such a case we would remedy this with another 
FUSION or TRANSFER.  



Observe also that this process also terminates at the root (an underflow at the root 
simply causes its deletion), and is hence bounded above by O(logn) as was the 
SPLIT operation in the INSERTION algorithm.  

 
Figure 6.6: deletion of key 11 resulting in an underflow at 
v. (a) fusion of v and w, (b) the resulting tree after the 

fusion.  
 
Almost done! However, remember that everything above only applies if the key 
we're trying to remove is stored at a node with only external nodes for children (if 
you don't remember making this assumption click here)! What do we do if this is 
not the case? Well, there just so happens to be a very easy way to swap any key in a 
(2,4)-tree with one that is stored in a node with the property we desire without 
destroying the ordering in the tree. This is done as follows: 
 
Swap the internal key ki with the largest element in the subtree immediately to its 
left. By the definition of a search tree, this key is the next smallest key in the tree 
next to ki. So once we delete ki, the tree will be correctly ordered.  
 
A natural question to ask would be "how do we find this element?" This is 
accomplished by performing the following steps:  

1. Let v be the internal node in which the element we wish to delete (ki) is 
stored. 

2. Let w be the right-most internal node in the subtree rooted at the i th child of 
v. 

3. Swap ki with the last item of w.  



Once this is done, the item we wish to delete will be at a node that has only external 
nodes for children, and we will be able to use the above procedure to delete it.  

6.8.2 Analysis of deletion 

• We began with a search procedure which takes O(logn) time.  
• This may be followed with a swap which also takes O(logn).  
• Finally, we had a maximum total of O(logn) TRANSFER or FUSION 

operations (each of which takes constant time).  

Therefore, deletion can also be accomplished in (2,4)-trees in O(logn) time. 


