
7,611,291 members and growing! (23,895 online) Email Password Sign in Join Remember me? Lost password?

Home Articles Questions & Answers Learning Zones Features Help! The Lounge Search

6

Article Browse Code Stats Revisions

Sponsored Links

 » Languages » Java » General

Licence CPOL

First Posted 3 Jan 2009

Views 92,337

Bookmarked 19 times

Introduction to Graph with Breadth

First Search(BFS) and Depth First

Search(DFS) Traversal Implemented in JAVA
By bijulsoni | 3 Jan 2009

Java Windows Java SE Dev Beginner

This article provides a brief introduction about graph data structure with BFS and DFS traversal

algorithm.

See Also

More like this

More by this author

Discuss this article

 4.73 (10 votes)

Download source code - 5.53 KB

Introduction

The objective of this article is to provide a basic introduction about graphs and the commonly used

algorithms used for traversing the graph, BFS and DFS. Breadth First Search (BFS) and Depth First

Search (DFS) are the two popular algorithms asked in most of the programming interviews. I was not

able to find a simple, precise explanation for beginners on this topic. So, I decided to write an article for

graph. This article will help any beginner to get some basic understanding about what graphs are, how

they are represented, graph traversals using BFS and DFS.

What is a Graph?

Graphs are one of the most interesting data structures in computer science. Graphs and the trees are

somewhat similar by their structure. In fact, tree is derived from the graph data structure. However

there are two important differences between trees and graphs.

Unlike trees, in graphs, a node can have many parents.1.

The link between the nodes may have values or weights.2.

Graphs are good in modeling real world problems like representing cities which are connected by roads

and finding the paths between cities, modeling air traffic controller system, etc. These kinds of problems

are hard to represent using simple tree structures. The following example shows a very simple graph:

In the above graph, A,B,C,D,E,F are called nodes and the connecting lines between these nodes are

called edges. The edges can be directed edges which are shown by arrows; they can also be weighted

edges in which some numbers are assigned to them. Hence, a graph can be a directed/undirected and

weighted/un-weighted graph. In this article, we will discuss undirected and un-weighted graphs.

Graph Representation in Programming Language

See Also...

Announcements

The Daily Insider

Introduction to Graph with Breadth First Search(BFS) and Depth First Sea... http://www.codeproject.com/KB/java/BFSDFS.aspx

1 of 5 3/9/2011 5:13 PM

Every graph has two components, Nodes and Edges. Let’s see how these two components are

implemented in a programming language like JAVA.

1. Nodes

Nodes are implemented by class, structures or as Link-List nodes. As an example in JAVA, we will

represent node for the above graph as follows:

 Collapse

//

Class Node

{

 Char data;

 Public Node(char c)

 {

 this.data=c;

 }

}

//

2. Edges

Edges represent the connection between nodes. There are two ways to represent edges.

Adjacency Matrix

It is a two dimensional array with Boolean flags. As an example, we can represent the edges for the

above graph using the following adjacency matrix.

In the given graph, A is connected with B, C and D nodes, so adjacency matrix will have 1s in the ‘A’ row

for the ‘B’, ‘C’ and ‘D’ column.

The advantages of representing the edges using adjacency matrix are:

Simplicity in implementation as you need a 2-dimensional array1.

Creating edges/removing edges is also easy as you need to update the Booleans2.

The drawbacks of using the adjacency matrix are:

Increased memory as you need to declare N*N matrix where N is the total number of nodes.1.

Redundancy of information, i.e. to represent an edge between A to B and B to A, it requires to set

two Boolean flag in an adjacency matrix.

2.

In JAVA, we can represent the adjacency matrix as a 2 dimensional array of integers/Booleans.

Adjacency List

It is an array of linked list nodes. In other words, it is like a list whose elements are a linked list. For the

given graph example, the edges will be represented by the below adjacency list:

Graph Traversal

The breadth first search (BFS) and the depth first search (DFS) are the two algorithms used for

traversing and searching a node in a graph. They can also be used to find out whether a node is

30 free programming books

Daily News: Signup now.

Introduction to Graph with Breadth First Search(BFS) and Depth First Sea... http://www.codeproject.com/KB/java/BFSDFS.aspx

2 of 5 3/9/2011 5:13 PM

reachable from a given node or not.

Depth First Search (DFS)

The aim of DFS algorithm is to traverse the graph in such a way that it tries to go far from the root

node. Stack is used in the implementation of the depth first search. Let’s see how depth first search

works with respect to the following graph:

As stated before, in DFS, nodes are visited by going through the depth of the tree from the starting

node. If we do the depth first traversal of the above graph and print the visited node, it will be “A B E F

C D”. DFS visits the root node and then its children nodes until it reaches the end node, i.e. E and F

nodes, then moves up to the parent nodes.

Algorithmic Steps

Step 1: Push the root node in the Stack.1.

Step 2: Loop until stack is empty.2.

Step 3: Peek the node of the stack.3.

Step 4: If the node has unvisited child nodes, get the unvisited child node, mark it as traversed

and push it on stack.

4.

Step 5: If the node does not have any unvisited child nodes, pop the node from the stack.

Based upon the above steps, the following Java code shows the implementation of the DFS

algorithm:

 Collapse

//

public void dfs()

{

//DFS uses Stack data structure

Stack s=new Stack();

s.push(this.rootNode);

rootNode.visited=true;

printNode(rootNode);

while(!s.isEmpty())

{

Node n=(Node)s.peek();

Node child=getUnvisitedChildNode(n);

if(child!=null)

{

child.visited=true;

printNode(child);

s.push(child);

}

else

{

s.pop();

}

}

//Clear visited property of nodes

clearNodes();

}

//

5.

Breadth First Search (BFS)

This is a very different approach for traversing the graph nodes. The aim of BFS algorithm is to traverse

the graph as close as possible to the root node. Queue is used in the implementation of the breadth first

search. Let’s see how BFS traversal works with respect to the following graph:

Introduction to Graph with Breadth First Search(BFS) and Depth First Sea... http://www.codeproject.com/KB/java/BFSDFS.aspx

3 of 5 3/9/2011 5:13 PM

If we do the breadth first traversal of the above graph and print the visited node as the output, it will

print the following output. “A B C D E F”. The BFS visits the nodes level by level, so it will start with

level 0 which is the root node, and then it moves to the next levels which are B, C and D, then the last

levels which are E and F.

Algorithmic Steps

Step 1: Push the root node in the Queue.1.

Step 2: Loop until the queue is empty.2.

Step 3: Remove the node from the Queue.3.

Step 4: If the removed node has unvisited child nodes, mark them as visited and insert the

unvisited children in the queue.

Based upon the above steps, the following Java code shows the implementation of the BFS

algorithm:

 Collapse

//

public void bfs()

{

//BFS uses Queue data structure

Queue q=new LinkedList();

q.add(this.rootNode);

printNode(this.rootNode);

rootNode.visited=true;

while(!q.isEmpty())

{

Node n=(Node)q.remove();

Node child=null;

while((child=getUnvisitedChildNode(n))!=null)

{

child.visited=true;

printNode(child);

q.add(child);

}

}

//Clear visited property of nodes

clearNodes();

}

//

4.

The full implementation of this is given in the attached source code.

About the Code

The source code for this article is a JAVA project that you can import in eclipse IDE or run from the

command prompt. You need to run the Main.java file to see the traversal output.

Main.java is a Java Console application which creates a simple undirected graph and then invokes the

DFS and BFS traversal of the graph.

History

29th December, 2008: Initial version

License

This article, along with any associated source code and files, is licensed under The Code Project Open

License (CPOL)

About the Author

Introduction to Graph with Breadth First Search(BFS) and Depth First Sea... http://www.codeproject.com/KB/java/BFSDFS.aspx

4 of 5 3/9/2011 5:13 PM

Article Top
Sign Up to vote for this article

link | Privacy | Terms of Use | Mobile

Last Updated: 3 Jan 2009

Copyright 2009 by bijulsoni

Everything else Copyright © CodeProject, 1999-2011

Web24 | Advertise on the Code Project

bijulsoni

Software Developer

Microsoft

 United States

Member

Comments and Discussions

You must Sign In to use this message board. (secure sign-in)

FAQ Search

Noise Tolerance Medium Layout Normal Per page 25 Update

 Msgs 1 to 6 of 6 (Total in Forum: 6) (Refresh) First Prev Next

ghon_pritz 15:51 10 Mar '10

RafayNaeem 7:09 27 Feb '10

doancia 9:11 30 Aug '09

midotetos 4:17 22 May '09

Vishu Gurav 17:08 12 May '09

clashingrocks 20:26 25 Feb '09

Last Visit: 19:00 31 Dec '99 Last Update: 12:12 9 Mar '11 1

 General News Question Answer Joke Rant Admin

Use Ctrl+Left/Right to switch messages, Ctrl+Up/Down to switch threads, Ctrl+PgUp/PgDown to switch pages.

Thankz!

THANKS FOR THE CODE

Thanks

important request

Nice

Thank You!

Introduction to Graph with Breadth First Search(BFS) and Depth First Sea... http://www.codeproject.com/KB/java/BFSDFS.aspx

5 of 5 3/9/2011 5:13 PM

