4 N

The 0/1 Knapsack Problem |

If we limit the z; to only 1 or O (take it or leave it), this results
in the 0/1 Knapsack problem.

Optimization Problem: find x4, x>, ...,xn, such that:

/

maximize: > 4 p; - x;

¢ subject to: Y w;-x; <m

$Z€{O,1},1§2§n

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 16 1

The Greedy method does not work
for the 0/1 Knapsack Problem!

l % $80

item 3 301 5120 Bl

Yoot ' 20| 5100 s 20| s100

He'mf a0l 5100 + T +
1 0] se0 |10] seo 10} se0

60 S100 $120 Knapsack = $220 = 5160 = $180 = 3240
(a) (h) ch

Figure 17.2 The greedy strategy does not work for the 0-1 knapsack problem.
(a) The thief must select a subset of the three items shown whose weight must not
exceed 50 pounds. (b) The optimal subset includes items 2 and 3. Any solution
with item 1 is suboptimal, even though item | has the greatest value per pound.
(c¢) For the fractional knapsack problem, taking the items in order of greatest value
per pound vields an optimal solution.

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 16 2

4 N

T he Knapsack Problem |

There are two versions of the problem:

1. “Fractional” knapsack problem.
2. “0/1" knapsack problem.

1 Items are divisible: you can take any fraction of an item.
Solved with a greedy algorithm.

2 Item are indivisible; you either take an item or not. Solved
with dynamic programming.

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 16 3

4 N

0/1 Knapsack problem: the brute-force
approach

Let’s first solve this problem with a straightforward algorithm:

e Since there are n items, there are 2™ possible combinations
of items.

e \We go through all combinations and find the one with the
maximum value and with total weight less or equal to m.

e Running time will be O(2").

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 16 4

-

~

Can we do better? |

e Yes, with an algorithm based on dynamic programming.

e Two key ingredients of optimization problems that lead to
a dynamic programming solution:

— Optimal substructure: an optimal solution to the
problem contains within it optimal solutions to
subproblems.

— Overlapping subproblems: same subproblem will be
visited again and again (i.e., subproblems share
subsubproblems).

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 16 5

4 N

Optimal Substructure of 0/1 Knapsack
problem

e Let KNAP(1, n, M) denote the 0/1 Knapsack problem,
choosing objects from [1..n] under the capacity constraint
of M.

o If (x1,xo,...,2n) iS an optimal solution for the problem
KNAP(1, n, M), then:

1 If x, = 0 (we do not pick the n-th object), then
(z1,2o,...,2,_1) Must be an optimal solution for the
problem KNAP(1, n-1, M).

2 If z, = 1 (we pick the n-th object), then (z1,2z5,...,2,,_1)
must be an optimal solution for the problem KNAP(1,
n_l, M - w'n/)

Proof: Cut-and-Paste.

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 16 6

4 N

Solution in terms of subproblems |

Based on the optimal substructure, we can write down the
solution for the 0/1 Knapsack problem as follows:

e Let C[n, M] be the value (total profits) of the optimal
solution for KNAP(1, n, M).

C[n, M] = max (profits for case 1,
profits for case 2)
= max (C[n-1, M], C[n-1, M - wyp] + pn).

Similarly

C[n-1, M] = max (C[n-2, M], C[n-2, M - w,,_1] + pp_1).
C[n-1, M - wp] = max (C[n-2, M - wy],
Cln-2, M - wp - wy_1] + pp—1)-

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 16 7

4 ™
Use a table to store C|[-,-] and build it in a
bottom up fashion

e For example, if n =4, M = 9; wg = 4, pp = 2, then
C[4, 9] = max(C[3, 9], C[3, 9 - 4] 4+ 2).

e We can use a 2D table to contain C[-,-]; If we want to
compute C[4, 9], C[3, 9] and C[3, 9 - 4] have to be ready.

e Look at the value C[n, M] = max (C[n - 1, M], C[n-1, M -
wn] + pn), to compute C[n, M], we only need the values in
the row C[n - 1,].

e So the table C|[-,-] can be built in a bottom up fashion: 1)
compute the first row C[0, 0], C[O, 1], C[O, 2] ... etc; 2)
row by row, fill the table.

CS404/504 Computer Science

Design and Analysis of Algorithms: Lecture 16 38

4 N

Programming = Table |

U 1 2 3 4 2 O / Q g
0
1
2
3 C[3, 3] C[3, 9]

-‘""‘--._____ +
4
C[4, 9]

e T he term “programming'’ used to refer to a tabular
method, and it predates computer programming.

CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 16 9

/

~

Construct the table: A recursive solution I

e Let Cli,]| be a cell in the table C[-,-]; it represents the
value (total profits) of the optimal solution for the problem
KNAP(1, ¢, @), which is the subproblem of selecting items
in [1..7] subject to the capacity constraint of w.

e Then Cli,w] = max(C[i — 1,=], Cli — 1, - w;] + p;).

CS404/504 Computer Science

Design and Analysis of Algorithms: Lecture 16 10

-

~

Boundary conditions |

We need to consider the boundary conditions:

e When 7 = 0; no object to choose, so C[i,w] = O;
e When w = 0; no capacity available, C[i,w] = 0;

e When w; > w; the current object : exceeds the capacity,
definitely we can not pick it. So C[i,w] = C[i — 1, =] for
this case.

CS404/504 Computer Science

Design and Analysis of Algorithms: Lecture 16 11

-

~

Complete recursive formulation |

T hus overall the recursive solution is:

Cli, @] = 9

’

\

0 if i =0 or w=

max(Cli — 1,w],Cli — 1,w — w;] + p;)

if + >0 and w]

The solution (optimal total profits) for the original 0/1
problem KNAP(1, n, M) is in C[n, M].

CS404 /504

Design and Analysis of Algorithms: Lecture 16

Computer Science

12

-

DP-01KNAPSACK(p[],

~

Algorithm |

w(], n, M) // n: number of items; M: ¢
forw . =0toM C[0,w] :=0;
fori:= 0 ton C[i, 0] := 0;

for: =1 ton
forw :=1to M
if (w[i] > w) // cannot pick item 14
Cli, w] ;= C[i - 1, =];
else
if (p[e] + C[+-1, @w - w[i]]) > C[+-1, w])
Cli, w] == pli] + Cli - 1, w - wli]];
else
Cli, @] :

Cli - 1, w];

apacity

return C[n, M];
CS404/504 Computer Science
Design and Analysis of Algorithms: Lecture 16 13

4 N

Complexity: ©(nM) |

DP-01KNAPSACK(p[], wW[], n, M) // n: number of items; M: capacity
forwc:=0toM C[0,@w] := 0; — (M)
for s := 0 to n C[z, O] := 0; — O(n)
for::=1ton —n
forw = 1to M — M
if (w[i] > @)
Cli, w] ;= C[i - 1, =];

else
if (p[s] + C[+-1, @w - w[i]]) > C[:-1, w])
Cli, w] := p[i] + Cli - 1, w - w[d]];
else

Cli, w] .= C[i - 1, @];

return C[n, M];
CS404/504 Computer Science

Design and Analysis of Algorithms: Lecture 16 14

-

~

An example |

Let’s run our algorithm on the following data:

n = 4 (number of items)
M = 5 (knapsack capacity = maximum weight)
(wiapi): (27 3)7 (37 4)! (4r 5)! (5' 6)

CS404/504

Design and Analysis of Algorithms: Lecture 16

Computer Science
15

-

~

Execution I

1\W

e S B D

OO O | O OO

CS404 /504

Design and Analysis of Algorithms: Lecture 16

Computer Science
16

-

Compute C[2, 5] |

\W

~

w | O (W

ONO | O =
W W | O N
SENY |IRUS T I FAN
1| W | O |[n

]

= W N =

OO IO O O O

CS404 /504

Computer Science

Design and Analysis of Algorithms: Lecture 16 17

-

Compute C[4, 5] |

\W

~

N S N N I

OO |OO O O

OO |-
Wl w|lwl|lo v
Alarlalw| o |w
wnlin| s~ lwWwlolx

STl glwlolun

CS404 /504

Computer Science

Design and Analysis of Algorithms: Lecture 16

18

4 N
How to find the actual items in the
Knapsack?

e All of the information we need is in the table.

e C[n, M] is the maximal value of items that can be placed in
the Knapsack.

e Let2=nand £k = M

if Cli,k] &= C[i— 1,k] then
mark the -th item as in the knapsack
1=1— 1,k =k — w;.

else

1=1—1

CS404/504

Computer Science
Design and Analysis of Algorithms: Lecture 16 19

-

Finding the items |

~

W o 1 2 3 4 5

ol o]0 |0 0|0 O
1o o |3 |3 |33

2 o0 | 3| 4| 4|7
slolo |34 |5 [[7)
4100 |3] 4|5 \l}

Design and Analysis of Algorithms: Lecture 16

Computer Science
20

Solution: {1,1,0,0}

W o 1 2 3 4
o| o o |fo\d| O | O
8 0 | 0 @ 3 | 3
ol o | 3 | 4 | 4T
31 0l o0 | 3| 4 |5
41 00 | 3|4 |5
5404501 Computer Science

Design and Analysis of Algorithms: Lecture 16 21

